Investigating Learning Methods for Binary Data

S. Visa, A. Ralescu, M. Ionescu
{"title":"Investigating Learning Methods for Binary Data","authors":"S. Visa, A. Ralescu, M. Ionescu","doi":"10.1109/NAFIPS.2007.383880","DOIUrl":null,"url":null,"abstract":"Michie et al. show in [1] that decision trees perform better than twenty other classification algorithms in classifying binary data. In this paper we further investigate this hypothesis by comparing the decision trees with a fuzzy set-based classifier and the naive Bayes on real and artificial datasets.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Michie et al. show in [1] that decision trees perform better than twenty other classification algorithms in classifying binary data. In this paper we further investigate this hypothesis by comparing the decision trees with a fuzzy set-based classifier and the naive Bayes on real and artificial datasets.
研究二进制数据的学习方法
Michie等人在[1]中表明,决策树在二值数据分类方面的表现优于其他20种分类算法。在本文中,我们通过比较决策树与基于模糊集的分类器和朴素贝叶斯在真实和人工数据集上的差异,进一步研究了这一假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信