Privacy-Preservation Mechanisms for Smart Energy Metering Devices Based on Differential Privacy

Alaa Gohar, F. Shafik, Frank Dürr, K. Rothermel, Amr H. El Mougy
{"title":"Privacy-Preservation Mechanisms for Smart Energy Metering Devices Based on Differential Privacy","authors":"Alaa Gohar, F. Shafik, Frank Dürr, K. Rothermel, Amr H. El Mougy","doi":"10.1109/WCNCW.2019.8902683","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of differential privacy to the Smart Grid. Due to the nature of the Smart Grid, data drawn from it can be used to predict individuals behaviours and actions inside their homes which is a huge privacy violation. We show an attack that is able to predict behaviour with up to 94.3% precision. Differential privacy masks the distinguishable features of the Smart Grid data, protecting users privacy and making their behaviour unpredictable. We propose a method which applies differential privacy without splitting the billing, and charges concurrently while keeping the cost unchanged.","PeriodicalId":121352,"journal":{"name":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2019.8902683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper investigates the application of differential privacy to the Smart Grid. Due to the nature of the Smart Grid, data drawn from it can be used to predict individuals behaviours and actions inside their homes which is a huge privacy violation. We show an attack that is able to predict behaviour with up to 94.3% precision. Differential privacy masks the distinguishable features of the Smart Grid data, protecting users privacy and making their behaviour unpredictable. We propose a method which applies differential privacy without splitting the billing, and charges concurrently while keeping the cost unchanged.
基于差分隐私的智能计量设备隐私保护机制
本文研究了差分隐私在智能电网中的应用。由于智能电网的性质,从中提取的数据可用于预测个人在家中的行为和行动,这是对隐私的巨大侵犯。我们展示了一种能够以高达94.3%的精度预测行为的攻击。差异隐私掩盖了智能电网数据的可区分特征,保护了用户隐私并使他们的行为不可预测。我们提出了一种在不分割计费的情况下应用差异隐私,并在保持成本不变的情况下同时收费的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信