Efficient Orthogonal Non-negative Matrix Factorization over Stiefel Manifold

W. Zhang, Mingkui Tan, Quan Z. Sheng, Lina Yao, Javen Qinfeng Shi
{"title":"Efficient Orthogonal Non-negative Matrix Factorization over Stiefel Manifold","authors":"W. Zhang, Mingkui Tan, Quan Z. Sheng, Lina Yao, Javen Qinfeng Shi","doi":"10.1145/2983323.2983761","DOIUrl":null,"url":null,"abstract":"Orthogonal Non-negative Matrix Factorization (ONMF) approximates a data matrix X by the product of two lower dimensional factor matrices: X -- UVT, with one of them orthogonal. ONMF has been widely applied for clustering, but it often suffers from high computational cost due to the orthogonality constraint. In this paper, we propose a method, called Nonlinear Riemannian Conjugate Gradient ONMF (NRCG-ONMF), which updates U and V alternatively and preserves the orthogonality of U while achieving fast convergence speed. Specifically, in order to update U, we develop a Nonlinear Riemannian Conjugate Gradient (NRCG) method on the Stiefel manifold using Barzilai-Borwein (BB) step size. For updating V, we use a closed-form solution under non-negativity constraint. Extensive experiments on both synthetic and real-world data sets show consistent superiority of our method over other approaches in terms of orthogonality preservation, convergence speed and clustering performance.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Orthogonal Non-negative Matrix Factorization (ONMF) approximates a data matrix X by the product of two lower dimensional factor matrices: X -- UVT, with one of them orthogonal. ONMF has been widely applied for clustering, but it often suffers from high computational cost due to the orthogonality constraint. In this paper, we propose a method, called Nonlinear Riemannian Conjugate Gradient ONMF (NRCG-ONMF), which updates U and V alternatively and preserves the orthogonality of U while achieving fast convergence speed. Specifically, in order to update U, we develop a Nonlinear Riemannian Conjugate Gradient (NRCG) method on the Stiefel manifold using Barzilai-Borwein (BB) step size. For updating V, we use a closed-form solution under non-negativity constraint. Extensive experiments on both synthetic and real-world data sets show consistent superiority of our method over other approaches in terms of orthogonality preservation, convergence speed and clustering performance.
Stiefel流形上的高效正交非负矩阵分解
正交非负矩阵分解(ONMF)通过两个低维因子矩阵的乘积来近似数据矩阵X: X—UVT,其中一个是正交的。ONMF在聚类中得到了广泛的应用,但由于正交性约束,其计算成本较高。在本文中,我们提出了一种非线性黎曼共轭梯度ONMF (NRCG-ONMF)方法,该方法交替更新U和V,在保持U的正交性的同时获得较快的收敛速度。具体来说,为了更新U,我们利用Barzilai-Borwein (BB)步长在Stiefel流形上建立了一种非线性黎曼共轭梯度(NRCG)方法。对于V的更新,我们使用非负性约束下的闭解。在合成数据集和真实数据集上进行的大量实验表明,我们的方法在保持正交性、收敛速度和聚类性能方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信