TaiChi: A Fine-Grained Action Recognition Dataset

Shan Sun, Feng Wang, Qi Liang, Liang He
{"title":"TaiChi: A Fine-Grained Action Recognition Dataset","authors":"Shan Sun, Feng Wang, Qi Liang, Liang He","doi":"10.1145/3078971.3079039","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce TaiChi which is a fine-grained action dataset. It consists of unconstrained user-uploaded web videos containing camera motion and partial occlusions which pose new challenges to fine-grained action recognition compared to the existing datasets. In this dataset, 2,772 samples of 58 fine-grained action classes are manually annotated. Additionally, we provide the baseline action recognition results using the state-of-the-art Improved Dense Trajectory feature and Fisher Vector representation with an MAP (Mean Average Precision) of 51.39%.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we introduce TaiChi which is a fine-grained action dataset. It consists of unconstrained user-uploaded web videos containing camera motion and partial occlusions which pose new challenges to fine-grained action recognition compared to the existing datasets. In this dataset, 2,772 samples of 58 fine-grained action classes are manually annotated. Additionally, we provide the baseline action recognition results using the state-of-the-art Improved Dense Trajectory feature and Fisher Vector representation with an MAP (Mean Average Precision) of 51.39%.
太极:一个细粒度动作识别数据集
本文介绍了一个细粒度动作数据集太极。它由不受约束的用户上传的包含摄像机运动和部分遮挡的网络视频组成,与现有数据集相比,这对细粒度动作识别提出了新的挑战。在这个数据集中,58个细粒度动作类的2772个样本被手工标注。此外,我们使用最先进的改进密集轨迹特征和Fisher向量表示提供基线动作识别结果,MAP(平均精度)为51.39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信