Parallel evolutionary multiobjective methodology for granularity and rule base learning in linguistic fuzzy systems

Juan M. Bardallo, Miguel A. De Vega, F. A. Márquez, A. Peregrín
{"title":"Parallel evolutionary multiobjective methodology for granularity and rule base learning in linguistic fuzzy systems","authors":"Juan M. Bardallo, Miguel A. De Vega, F. A. Márquez, A. Peregrín","doi":"10.1109/FUZZY.2009.5277343","DOIUrl":null,"url":null,"abstract":"In this paper we present a parallel evolutionary multi-objective methodology for granularity and rule-based learning for Mamdani Fuzzy Systems. The proposed methodology produces a set of solutions with different trade-off between accuracy and interpretability, based on searching the number of labels and the fuzzy rules, and also makes a variable selection. This process is achieved by exploiting present parallel computer systems allowing it to deal with more complex models.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we present a parallel evolutionary multi-objective methodology for granularity and rule-based learning for Mamdani Fuzzy Systems. The proposed methodology produces a set of solutions with different trade-off between accuracy and interpretability, based on searching the number of labels and the fuzzy rules, and also makes a variable selection. This process is achieved by exploiting present parallel computer systems allowing it to deal with more complex models.
语言模糊系统中粒度和规则库学习的并行进化多目标方法
本文提出了一种并行进化多目标方法,用于Mamdani模糊系统的粒度和基于规则的学习。该方法通过对标签数量和模糊规则的搜索,生成了一组在精度和可解释性之间权衡不同的解,并进行了变量选择。这个过程是通过利用现有的并行计算机系统来实现的,允许它处理更复杂的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信