Research on finding community structure based on filtration network model

Yi Shen, Wenjiang Pei, Tao Li, Jiming Liu, Lei Yang, Shao-ping Wang, Zhenya He
{"title":"Research on finding community structure based on filtration network model","authors":"Yi Shen, Wenjiang Pei, Tao Li, Jiming Liu, Lei Yang, Shao-ping Wang, Zhenya He","doi":"10.1109/ICNNSP.2008.4590301","DOIUrl":null,"url":null,"abstract":"By defining community recursive coefficient M, we propose a new efficient algorithm called filtration split algorithm for discovering community structure in complex networks. By optimizing the M of child-networks based on dynamic recursive principle, the local communities are discovered automatically. Theoretical analysis and experiment results show that the algorithm can filtrate more than one edge once and make the networks split in parallel. For a network with n vertices, m edges, and c communities, the computation complexity is less than O((c+1)m+(c+1)). For many real-world networks are sparse m~n and c+1 Ltn, our algorithm can run in essentially linear time O((c+1)n).","PeriodicalId":250993,"journal":{"name":"2008 International Conference on Neural Networks and Signal Processing","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Neural Networks and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2008.4590301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By defining community recursive coefficient M, we propose a new efficient algorithm called filtration split algorithm for discovering community structure in complex networks. By optimizing the M of child-networks based on dynamic recursive principle, the local communities are discovered automatically. Theoretical analysis and experiment results show that the algorithm can filtrate more than one edge once and make the networks split in parallel. For a network with n vertices, m edges, and c communities, the computation complexity is less than O((c+1)m+(c+1)). For many real-world networks are sparse m~n and c+1 Ltn, our algorithm can run in essentially linear time O((c+1)n).
基于过滤网络模型的群落结构查找研究
通过定义社团递归系数M,提出了一种新的高效算法——过滤分割算法,用于复杂网络中发现社团结构。基于动态递归原理对子网络的M进行优化,自动发现局部社区。理论分析和实验结果表明,该算法可以一次过滤多个边缘,使网络并行分裂。对于具有n个顶点、m条边和c个社区的网络,计算复杂度小于O((c+1)m+(c+1))。对于许多现实世界的网络是稀疏的m~n和c+1 Ltn,我们的算法基本上可以在线性时间O((c+1)n)内运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信