Wai Weng Lo, S. Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius Portmann
{"title":"Graph Neural Network-based Android Malware Classification with Jumping Knowledge","authors":"Wai Weng Lo, S. Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius Portmann","doi":"10.1109/DSC54232.2022.9888878","DOIUrl":null,"url":null,"abstract":"This paper presents a new Android malware de-tection method based on Graph Neural Networks (GNNs) with Jumping-Knowledge (JK). Android function call graphs (FCGs) consist of a set of program functions and their inter-procedural calls. Thus, this paper proposes a GNN-based method for Android malware detection by capturing meaningful intra-procedural call path patterns. In addition, a Jumping-Knowledge technique is applied to minimize the effect of the over-smoothing problem, which is common in GNNs. The proposed method has been extensively evaluated using two benchmark datasets. The results demonstrate the superiority of our approach compared to state-of-the-art approaches in terms of key classification metrics, which demonstrates the potential of GNNs in Android malware detection and classification.","PeriodicalId":368903,"journal":{"name":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC54232.2022.9888878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a new Android malware de-tection method based on Graph Neural Networks (GNNs) with Jumping-Knowledge (JK). Android function call graphs (FCGs) consist of a set of program functions and their inter-procedural calls. Thus, this paper proposes a GNN-based method for Android malware detection by capturing meaningful intra-procedural call path patterns. In addition, a Jumping-Knowledge technique is applied to minimize the effect of the over-smoothing problem, which is common in GNNs. The proposed method has been extensively evaluated using two benchmark datasets. The results demonstrate the superiority of our approach compared to state-of-the-art approaches in terms of key classification metrics, which demonstrates the potential of GNNs in Android malware detection and classification.