Synthesis of Pareto-optimal Policies for Continuous-Time Markov Decision Processes

Naif Alasmari, R. Calinescu
{"title":"Synthesis of Pareto-optimal Policies for Continuous-Time Markov Decision Processes","authors":"Naif Alasmari, R. Calinescu","doi":"10.1109/SEAA56994.2022.00071","DOIUrl":null,"url":null,"abstract":"We present a work-in-progress method for the synthesis of continuous-time Markov decision process (CTMDP) policies–an important problem not handled by current probabilistic model checkers. The policies synthesised by this method correspond to configurations of software systems or software controllers of cyber-physical systems (CPS) that satisfy predefined nonfunctional constraints and are Pareto-optimal with respect to a set of optimisation objectives. We illustrate the effectiveness of our method by using it to synthesise optimal configurations for a client-server system, and optimal controllers for a driver-attention management CPS.","PeriodicalId":269970,"journal":{"name":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA56994.2022.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a work-in-progress method for the synthesis of continuous-time Markov decision process (CTMDP) policies–an important problem not handled by current probabilistic model checkers. The policies synthesised by this method correspond to configurations of software systems or software controllers of cyber-physical systems (CPS) that satisfy predefined nonfunctional constraints and are Pareto-optimal with respect to a set of optimisation objectives. We illustrate the effectiveness of our method by using it to synthesise optimal configurations for a client-server system, and optimal controllers for a driver-attention management CPS.
连续时间马尔可夫决策过程pareto最优策略的综合
我们提出了一种合成连续时间马尔可夫决策过程(CTMDP)策略的方法,这是目前概率模型检查器没有处理的一个重要问题。通过这种方法合成的策略对应于软件系统或网络物理系统(CPS)的软件控制器的配置,这些配置满足预定义的非功能约束,并且相对于一组优化目标是帕累托最优的。我们通过使用它来综合客户端-服务器系统的最优配置和驾驶员-注意力管理CPS的最优控制器来说明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信