FPGA implementation of DWT EEG data compression for wireless body sensor networks

Mohamed Elsayed, A. Badawy, M. Mahmuddin, Tarek M. Elfouly, Amr M. Mohamed, K. Abualsaud
{"title":"FPGA implementation of DWT EEG data compression for wireless body sensor networks","authors":"Mohamed Elsayed, A. Badawy, M. Mahmuddin, Tarek M. Elfouly, Amr M. Mohamed, K. Abualsaud","doi":"10.1109/ICWISE.2016.8187756","DOIUrl":null,"url":null,"abstract":"Wireless body sensor networks (WBSN) provide an appreciable aid to patients who require continuous care and monitoring. One key application of WBSN is mobile health (mHealth) for continuous patient monitoring, acquiring vital signs e.g. EEG, ECG, etc. Such monitoring devices are doomed to be portable, i.e., batter powered, and agile to allow for patient mobility, while providing sustainable, energy-efficient hardware platforms. Hence, EEG data compression is critical in reducing the transmission power, hence increase the battery life. In this paper, we design and implement a complete hardware model based on discrete wavelet transform (DWT) for vital signs data compression and reconstruction on a field programmable gate array (FPGA) based platform. We evaluate the performance of our DWT compression FPGA implementation under different practical parameters including filter length and the compression ratio. We investigate the hardware and computational complexity of our design in terms of used resource blocks for future comparison with state-of-the-art techniques. Our results show the efficiency of the proposed hardware compression and reconstruction model at different system parameters, including the high pass filter coefficients, and DWT type, and DWT threshold.","PeriodicalId":358005,"journal":{"name":"2016 IEEE Conference on Wireless Sensors (ICWiSE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Wireless Sensors (ICWiSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWISE.2016.8187756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Wireless body sensor networks (WBSN) provide an appreciable aid to patients who require continuous care and monitoring. One key application of WBSN is mobile health (mHealth) for continuous patient monitoring, acquiring vital signs e.g. EEG, ECG, etc. Such monitoring devices are doomed to be portable, i.e., batter powered, and agile to allow for patient mobility, while providing sustainable, energy-efficient hardware platforms. Hence, EEG data compression is critical in reducing the transmission power, hence increase the battery life. In this paper, we design and implement a complete hardware model based on discrete wavelet transform (DWT) for vital signs data compression and reconstruction on a field programmable gate array (FPGA) based platform. We evaluate the performance of our DWT compression FPGA implementation under different practical parameters including filter length and the compression ratio. We investigate the hardware and computational complexity of our design in terms of used resource blocks for future comparison with state-of-the-art techniques. Our results show the efficiency of the proposed hardware compression and reconstruction model at different system parameters, including the high pass filter coefficients, and DWT type, and DWT threshold.
无线身体传感器网络中DWT脑电数据压缩的FPGA实现
无线身体传感器网络(WBSN)为需要持续护理和监测的患者提供了可观的帮助。WBSN的一个关键应用是移动医疗(mHealth),用于连续监测患者,获取生命体征,如脑电图、心电图等。这样的监测设备注定是便携的,也就是说,有更好的动力,灵活地允许病人移动,同时提供可持续的、节能的硬件平台。因此,脑电图数据压缩对于降低传输功率,从而延长电池寿命至关重要。本文在基于现场可编程门阵列(FPGA)的平台上,设计并实现了基于离散小波变换(DWT)的生命体征数据压缩与重构的完整硬件模型。我们在不同的实际参数下评估了我们的DWT压缩FPGA实现的性能,包括滤波器长度和压缩比。我们根据使用的资源块来研究我们设计的硬件和计算复杂性,以便将来与最先进的技术进行比较。研究结果表明,在不同的系统参数下,包括高通滤波系数、DWT类型和DWT阈值,所提出的硬件压缩和重构模型都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信