A novel method to identify nonlinear dynamic systems

Ching-Hung Lee, C. Teng
{"title":"A novel method to identify nonlinear dynamic systems","authors":"Ching-Hung Lee, C. Teng","doi":"10.23919/ECC.1999.7099704","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for identifying a nonlinear system using the Hammerstein model. Such model consists of static nonlinear part and linear dynamic part in a cascading structure. The static nonlinear part is modeled by a fuzzy neural network (FNN), and the linear dynamic part is modeled by an auto-regressive moving average (ARMA) model. Based on our approach, a nonlinear dynamical system can be divided into two parts, a nonlinear static function and an ARMA model. Furthermore, a simple learning algorithm is developed for obtaining the parameters of FNN and ARMA model. In addition, the convergence analysis for the cascade model (FNN+ARMA) is also studied by the Lyapunov approach. A simulation result is given to illustrate the effectiveness of the proposed method. Simulation result also demonstrates that this approach is useful for systems with disturbance input.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new method for identifying a nonlinear system using the Hammerstein model. Such model consists of static nonlinear part and linear dynamic part in a cascading structure. The static nonlinear part is modeled by a fuzzy neural network (FNN), and the linear dynamic part is modeled by an auto-regressive moving average (ARMA) model. Based on our approach, a nonlinear dynamical system can be divided into two parts, a nonlinear static function and an ARMA model. Furthermore, a simple learning algorithm is developed for obtaining the parameters of FNN and ARMA model. In addition, the convergence analysis for the cascade model (FNN+ARMA) is also studied by the Lyapunov approach. A simulation result is given to illustrate the effectiveness of the proposed method. Simulation result also demonstrates that this approach is useful for systems with disturbance input.
一种辨识非线性动态系统的新方法
本文提出了一种利用Hammerstein模型辨识非线性系统的新方法。该模型由级联结构中的静态非线性部分和线性动态部分组成。静态非线性部分采用模糊神经网络(FNN)建模,线性动态部分采用自回归移动平均(ARMA)模型建模。基于该方法,非线性动力系统可分为非线性静态函数和ARMA模型两部分。此外,提出了一种简单的学习算法来获取FNN和ARMA模型的参数。此外,本文还采用Lyapunov方法研究了级联模型(FNN+ARMA)的收敛性分析。仿真结果验证了该方法的有效性。仿真结果也证明了该方法对具有扰动输入的系统是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信