Genetic Operators in Evolutionary Music Composition

Csaba Sulyok
{"title":"Genetic Operators in Evolutionary Music Composition","authors":"Csaba Sulyok","doi":"10.1109/SYNASC.2018.00047","DOIUrl":null,"url":null,"abstract":"Genetic operators represent the alterations applied to entities within an evolutionary algorithm; they help create a new generation from an existing one, ensuring genetic diversity while also preserving the emergent overall strengths of a population. In this paper, we investigate different approaches to hyperparameter configuration of genetic operators within a linear genetic programming framework. We analyze the benefits of adaptively setting operator distributions and rates using hill climbing. A comparison is drawn between the constant and adaptive methodologies. This research is part of our ongoing work on evolutionary music composition, where we cast the actions of a virtual composer as instructions on a Turing-complete virtual register machine. The created music is assessed by statistical similarity to a given corpus. The frailty to change of our genotype dictates fine-tuning of the genetic operators to help convergence. Our results show that adaptive methods only provide a marginal improvement over constant settings and only in select cases, such as globally altering operator hyperparameters without changing the distribution. In other cases, they prove detrimental to the final grades.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Genetic operators represent the alterations applied to entities within an evolutionary algorithm; they help create a new generation from an existing one, ensuring genetic diversity while also preserving the emergent overall strengths of a population. In this paper, we investigate different approaches to hyperparameter configuration of genetic operators within a linear genetic programming framework. We analyze the benefits of adaptively setting operator distributions and rates using hill climbing. A comparison is drawn between the constant and adaptive methodologies. This research is part of our ongoing work on evolutionary music composition, where we cast the actions of a virtual composer as instructions on a Turing-complete virtual register machine. The created music is assessed by statistical similarity to a given corpus. The frailty to change of our genotype dictates fine-tuning of the genetic operators to help convergence. Our results show that adaptive methods only provide a marginal improvement over constant settings and only in select cases, such as globally altering operator hyperparameters without changing the distribution. In other cases, they prove detrimental to the final grades.
进化音乐创作中的遗传算子
遗传算子表示在进化算法中应用于实体的改变;它们有助于从现有的一代中创造出新的一代,确保了遗传多样性,同时也保留了一个种群的新兴整体优势。本文研究了线性遗传规划框架下遗传算子超参数组态的不同方法。我们分析了利用爬坡法自适应设置算子分布和速率的好处。对常数方法和自适应方法进行了比较。这项研究是我们正在进行的进化音乐创作工作的一部分,我们将虚拟作曲家的动作作为图灵完全虚拟音域机的指令。通过与给定语料库的统计相似性来评估所创建的音乐。我们基因型改变的脆弱性决定了基因操作符的微调,以帮助趋同。我们的研究结果表明,自适应方法仅在特定情况下提供了相对于恒定设置的边际改进,例如在不改变分布的情况下全局改变算子超参数。在其他情况下,它们被证明对最终成绩有害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信