Adaptive Mapping of Sound Collections for Data-driven Musical Interfaces

Gerard Roma, Owen Green, P. Tremblay
{"title":"Adaptive Mapping of Sound Collections for Data-driven Musical Interfaces","authors":"Gerard Roma, Owen Green, P. Tremblay","doi":"10.5281/zenodo.3672976","DOIUrl":null,"url":null,"abstract":"Descriptor spaces have become an ubiquitous interaction paradigm for music based on collections of audio samples. However, most systems rely on a small predefined set of descriptors, which the user is often required to understand and choose from. There is no guarantee that the chosen descriptors are relevant for a given collection. In addition, this method does not scale to longer samples that require higher-dimensional descriptions, which biases systems towards the use of short samples. In this paper we propose novel framework for automatic creation of interactive sound spaces from sound collections using feature learning and dimensionality reduction. The framework is implemented as a software library using the SuperCollider language. We compare several algorithms and describe some example interfaces for interacting with the resulting spaces. Our experiments signal the potential of unsupervised algorithms for creating data-driven musical interfaces.","PeriodicalId":161317,"journal":{"name":"New Interfaces for Musical Expression","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Interfaces for Musical Expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.3672976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Descriptor spaces have become an ubiquitous interaction paradigm for music based on collections of audio samples. However, most systems rely on a small predefined set of descriptors, which the user is often required to understand and choose from. There is no guarantee that the chosen descriptors are relevant for a given collection. In addition, this method does not scale to longer samples that require higher-dimensional descriptions, which biases systems towards the use of short samples. In this paper we propose novel framework for automatic creation of interactive sound spaces from sound collections using feature learning and dimensionality reduction. The framework is implemented as a software library using the SuperCollider language. We compare several algorithms and describe some example interfaces for interacting with the resulting spaces. Our experiments signal the potential of unsupervised algorithms for creating data-driven musical interfaces.
数据驱动音乐接口的声音集合自适应映射
描述符空间已经成为基于音频样本集合的音乐的无处不在的交互范例。然而,大多数系统依赖于一小组预定义的描述符,用户通常需要理解并从中进行选择。不能保证所选的描述符与给定的集合相关。此外,这种方法不能扩展到需要高维描述的更长的样本,这使系统倾向于使用短样本。在本文中,我们提出了一种新的框架,用于使用特征学习和降维从声音集合中自动创建交互式声音空间。该框架是使用SuperCollider语言作为软件库实现的。我们比较了几种算法,并描述了一些与结果空间交互的示例接口。我们的实验表明了无监督算法在创建数据驱动的音乐界面方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信