Recent Developments in Derivative-Free Multiobjective Optimisation

A. Custódio, M. Emmerich, José Madeira
{"title":"Recent Developments in Derivative-Free Multiobjective Optimisation","authors":"A. Custódio, M. Emmerich, José Madeira","doi":"10.4203/CTR.5.1","DOIUrl":null,"url":null,"abstract":"In practical applications it is common to have several conflicting objective functions to optimize. Frequently, these functions are nondifferentiable or discontinuous, could be subject to numerical noise and/or be of black-box type, preventing the use of derivative-based techniques. In this paper we give an overview of some recent developments in Derivative-free Multiobjective Optimization. We introduce the basic concepts and ideas commonly considered for the algorithmic development in Multiobjective Optimization and review some recent classes of methods which do not make use of derivatives. In particular, we will focus on Direct Search Methods (DSM) of directional type and Evolutionary Multiobjective Optimization (EMO).","PeriodicalId":431190,"journal":{"name":"Computational Technology Reviews","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Technology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4203/CTR.5.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In practical applications it is common to have several conflicting objective functions to optimize. Frequently, these functions are nondifferentiable or discontinuous, could be subject to numerical noise and/or be of black-box type, preventing the use of derivative-based techniques. In this paper we give an overview of some recent developments in Derivative-free Multiobjective Optimization. We introduce the basic concepts and ideas commonly considered for the algorithmic development in Multiobjective Optimization and review some recent classes of methods which do not make use of derivatives. In particular, we will focus on Direct Search Methods (DSM) of directional type and Evolutionary Multiobjective Optimization (EMO).
无导数多目标优化的新进展
在实际应用中,通常会有几个相互冲突的目标函数需要优化。通常,这些函数是不可微的或不连续的,可能受到数值噪声和/或黑盒类型的影响,阻碍了基于导数的技术的使用。本文综述了无导数多目标优化的一些最新进展。本文介绍了多目标优化算法发展中常用的基本概念和思想,并回顾了最近几种不使用导数的算法。我们将特别关注定向型的直接搜索方法(DSM)和进化多目标优化(EMO)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信