A. Gardelein, S. Le Tacon, E. Tanguy, N. Breuil, T. Razban
{"title":"Characterization of electrooptic polymer applied to microwave sensing","authors":"A. Gardelein, S. Le Tacon, E. Tanguy, N. Breuil, T. Razban","doi":"10.1109/MWP.2006.346571","DOIUrl":null,"url":null,"abstract":"In this paper we present electrooptic measurement of a crosslinked side chain PGMA/DR1 polymer. Measured values are as high as 11 pm/V at 1310 nm, we present measurement as a function of incident beam reflexion point and show dependance between the reflexion point location over the sample and the measured electrooptic coefficient. We present low frequency relative dielectric constant using a capacitance measurement method. Using this method, we found a relative permittivity of 4.46plusmn0.38 for our polymer. We present a new electrooptic microwave sensor, where we enhance the electrooptical interaction by increasing the optical path length using a Fabry-Perot cavity and we concentrate the electric field inside our device using a microstrip resonator. Expected interaction enhancement value is expected to be as high 310deg compared to the simple reflexion case at low frequency","PeriodicalId":305579,"journal":{"name":"2006 International Topical Meeting on Microwave Photonics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Topical Meeting on Microwave Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP.2006.346571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we present electrooptic measurement of a crosslinked side chain PGMA/DR1 polymer. Measured values are as high as 11 pm/V at 1310 nm, we present measurement as a function of incident beam reflexion point and show dependance between the reflexion point location over the sample and the measured electrooptic coefficient. We present low frequency relative dielectric constant using a capacitance measurement method. Using this method, we found a relative permittivity of 4.46plusmn0.38 for our polymer. We present a new electrooptic microwave sensor, where we enhance the electrooptical interaction by increasing the optical path length using a Fabry-Perot cavity and we concentrate the electric field inside our device using a microstrip resonator. Expected interaction enhancement value is expected to be as high 310deg compared to the simple reflexion case at low frequency