Forecasting popularity of news article by title analyzing with BN-LSTM network

Anton Voronov, Yao Shen, Pritom Kumar Mondal
{"title":"Forecasting popularity of news article by title analyzing with BN-LSTM network","authors":"Anton Voronov, Yao Shen, Pritom Kumar Mondal","doi":"10.1145/3335656.3335679","DOIUrl":null,"url":null,"abstract":"In recent years, predicting the popularity of articles in the news has become a more urgent task for authors, online resources and advertisers. In the order of this task, we propose a new method based on the Online Deep Neural network with Bottleneck compression, what predicts the article popularity with only its headline. The proposed methodology evaluated on the Chinese and Russian language-based datasets with over than 800 000 samples in total. We describe the challenges and solutions related to the popularity prediction and the headline analysis. We show that the provided method can reach acceptable results even with different languages, news source popularity dynamics.","PeriodicalId":396772,"journal":{"name":"Proceedings of the 2019 International Conference on Data Mining and Machine Learning","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Data Mining and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3335656.3335679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In recent years, predicting the popularity of articles in the news has become a more urgent task for authors, online resources and advertisers. In the order of this task, we propose a new method based on the Online Deep Neural network with Bottleneck compression, what predicts the article popularity with only its headline. The proposed methodology evaluated on the Chinese and Russian language-based datasets with over than 800 000 samples in total. We describe the challenges and solutions related to the popularity prediction and the headline analysis. We show that the provided method can reach acceptable results even with different languages, news source popularity dynamics.
利用BN-LSTM网络进行标题分析,预测新闻文章的流行度
近年来,预测新闻文章的受欢迎程度已成为作者、网络资源和广告商的一项更为紧迫的任务。为了完成这一任务,我们提出了一种基于瓶颈压缩的在线深度神经网络的新方法,该方法仅用标题来预测文章的受欢迎程度。所提出的方法在基于中文和俄语的数据集上进行了评估,总共有80多万个样本。我们描述了与流行预测和标题分析相关的挑战和解决方案。我们表明,即使在不同的语言、新闻源流行动态下,所提供的方法也能达到可接受的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信