Effective Recommendation with Category Hierarchy

Zhu Sun, G. Guo, Jie Zhang
{"title":"Effective Recommendation with Category Hierarchy","authors":"Zhu Sun, G. Guo, Jie Zhang","doi":"10.1145/2930238.2930269","DOIUrl":null,"url":null,"abstract":"Although flat item category structure where categories are independent in a same level has been well studied to enhance recommendation performance, in many real applications, item category is often organized in hierarchies to reflect the inherent correlations among categories. In this paper, we propose a novel matrix factorization model by exploiting category hierarchy from the perspectives of users and items for effective recommendation. Specifically, a user (an item) can be influenced (characterized) by her preferred categories (the categories it belongs to) in the hierarchy. We incorporate how different categories in the hierarchy co-influence a user and an item. Empirical results show the superiority of our approach against other counterparts.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Although flat item category structure where categories are independent in a same level has been well studied to enhance recommendation performance, in many real applications, item category is often organized in hierarchies to reflect the inherent correlations among categories. In this paper, we propose a novel matrix factorization model by exploiting category hierarchy from the perspectives of users and items for effective recommendation. Specifically, a user (an item) can be influenced (characterized) by her preferred categories (the categories it belongs to) in the hierarchy. We incorporate how different categories in the hierarchy co-influence a user and an item. Empirical results show the superiority of our approach against other counterparts.
基于类别层次的有效推荐
虽然人们已经很好地研究了在同一层次上相互独立的平面项目类别结构以提高推荐性能,但在许多实际应用中,项目类别往往被组织成层次结构,以反映类别之间的内在相关性。本文提出了一种新的矩阵分解模型,从用户和商品的角度出发,利用类别层次进行有效推荐。具体来说,用户(一个项目)可以受到其在层次结构中的首选类别(它所属的类别)的影响(特征)。我们将层次结构中的不同类别如何共同影响用户和项目。实证结果表明,我们的方法相对于其他同行具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信