Stochastic evolution: a fast effective heuristic for some generic layout problems

Y. Saab, V. Rao
{"title":"Stochastic evolution: a fast effective heuristic for some generic layout problems","authors":"Y. Saab, V. Rao","doi":"10.1109/DAC.1990.114823","DOIUrl":null,"url":null,"abstract":"There are two canonical optimization problems, network bisectioning (NB) and traveling salesman (TS), that emerge from the physical design and layout of integrated circuits. An analogy is used between iterative techniques for combinatorial optimization and the evolution of biological species to obtain the stochastic evolution (SE) heuristic for solving a wide range of combinatorial optimization problems. It is shown that SE can be specifically tailored to solve both NB and TS. Experimental results for the NB and TS problems show that the SE algorithm produces better quality solutions and is faster than the simulated annealing algorithm in all instances considered.<<ETX>>","PeriodicalId":118552,"journal":{"name":"27th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC.1990.114823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

There are two canonical optimization problems, network bisectioning (NB) and traveling salesman (TS), that emerge from the physical design and layout of integrated circuits. An analogy is used between iterative techniques for combinatorial optimization and the evolution of biological species to obtain the stochastic evolution (SE) heuristic for solving a wide range of combinatorial optimization problems. It is shown that SE can be specifically tailored to solve both NB and TS. Experimental results for the NB and TS problems show that the SE algorithm produces better quality solutions and is faster than the simulated annealing algorithm in all instances considered.<>
随机进化:一类通用布局问题的快速有效的启发式算法
网络对分(NB)和旅行推销员(TS)是集成电路物理设计和布局中出现的两个典型优化问题。将组合优化的迭代技术与生物物种的进化进行类比,得到求解各种组合优化问题的随机进化启发式算法。实验结果表明,SE算法可以专门用于解决NB和TS问题。NB和TS问题的实验结果表明,SE算法在所有考虑的情况下都比模拟退火算法产生更高质量的解,并且速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信