Use relative weight to improve the kNN for unbalanced text category

Xiaodong Liu, F. Ren, Caixia Yuan
{"title":"Use relative weight to improve the kNN for unbalanced text category","authors":"Xiaodong Liu, F. Ren, Caixia Yuan","doi":"10.1109/NLPKE.2010.5587799","DOIUrl":null,"url":null,"abstract":"The technology of text category is widely used in natural language processing. As one of best text category algorithms, kNN is very popular used in many applications. Traditional kNN assumes that the distribution of training data is even, however, it is not the case for many situations. When we used kNN in our Topic Detection and Tracking (TDT) system, it did not perform well due to the bias of training data set. To overcome the obstacle caused by data bias, this paper proposes an approach which uses relative weight to adjust the weight of kNN (RWKNN). When evaluated on the data of TDT2 and TDT3 Chinese corpus, RWKNN proves to be robust on unbalanced data and yields better performance than the traditional kNN.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The technology of text category is widely used in natural language processing. As one of best text category algorithms, kNN is very popular used in many applications. Traditional kNN assumes that the distribution of training data is even, however, it is not the case for many situations. When we used kNN in our Topic Detection and Tracking (TDT) system, it did not perform well due to the bias of training data set. To overcome the obstacle caused by data bias, this paper proposes an approach which uses relative weight to adjust the weight of kNN (RWKNN). When evaluated on the data of TDT2 and TDT3 Chinese corpus, RWKNN proves to be robust on unbalanced data and yields better performance than the traditional kNN.
使用相对权重来改善不平衡文本类别的kNN
文本分类技术在自然语言处理中有着广泛的应用。作为最好的文本分类算法之一,kNN在许多应用中得到了广泛的应用。传统的kNN假设训练数据的分布是均匀的,但在很多情况下并非如此。当我们在主题检测和跟踪(TDT)系统中使用kNN时,由于训练数据集的偏差,它的性能不佳。为了克服数据偏差带来的障碍,本文提出了一种利用相对权重来调整kNN权重(RWKNN)的方法。通过对TDT2和TDT3汉语语料库数据的评估,RWKNN在非平衡数据上具有鲁棒性,性能优于传统kNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信