Valter Balegas, S. Duarte, Carla Ferreira, R. Rodrigues, Nuno M. Preguiça, Mahsa Najafzadeh, M. Shapiro
{"title":"Putting consistency back into eventual consistency","authors":"Valter Balegas, S. Duarte, Carla Ferreira, R. Rodrigues, Nuno M. Preguiça, Mahsa Najafzadeh, M. Shapiro","doi":"10.1145/2741948.2741972","DOIUrl":null,"url":null,"abstract":"Geo-replicated storage systems are at the core of current Internet services. The designers of the replication protocols used by these systems must choose between either supporting low-latency, eventually-consistent operations, or ensuring strong consistency to ease application correctness. We propose an alternative consistency model, Explicit Consistency, that strengthens eventual consistency with a guarantee to preserve specific invariants defined by the applications. Given these application-specific invariants, a system that supports Explicit Consistency identifies which operations would be unsafe under concurrent execution, and allows programmers to select either violation-avoidance or invariant-repair techniques. We show how to achieve the former, while allowing operations to complete locally in the common case, by relying on a reservation system that moves coordination off the critical path of operation execution. The latter, in turn, allows operations to execute without restriction, and restore invariants by applying a repair operation to the database state. We present the design and evaluation of Indigo, a middleware that provides Explicit Consistency on top of a causally-consistent data store. Indigo guarantees strong application invariants while providing similar latency to an eventually-consistent system in the common case.","PeriodicalId":119291,"journal":{"name":"Proceedings of the Tenth European Conference on Computer Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2741948.2741972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135
Abstract
Geo-replicated storage systems are at the core of current Internet services. The designers of the replication protocols used by these systems must choose between either supporting low-latency, eventually-consistent operations, or ensuring strong consistency to ease application correctness. We propose an alternative consistency model, Explicit Consistency, that strengthens eventual consistency with a guarantee to preserve specific invariants defined by the applications. Given these application-specific invariants, a system that supports Explicit Consistency identifies which operations would be unsafe under concurrent execution, and allows programmers to select either violation-avoidance or invariant-repair techniques. We show how to achieve the former, while allowing operations to complete locally in the common case, by relying on a reservation system that moves coordination off the critical path of operation execution. The latter, in turn, allows operations to execute without restriction, and restore invariants by applying a repair operation to the database state. We present the design and evaluation of Indigo, a middleware that provides Explicit Consistency on top of a causally-consistent data store. Indigo guarantees strong application invariants while providing similar latency to an eventually-consistent system in the common case.