Optimal classification of polarimetric SAR images using segmentation

P. Lombardo, C. J. Oliver
{"title":"Optimal classification of polarimetric SAR images using segmentation","authors":"P. Lombardo, C. J. Oliver","doi":"10.1109/NRC.2002.999684","DOIUrl":null,"url":null,"abstract":"The paper presents an optimised polarimetric segmentation technique for synthetic aperture radar (SAR) images, based on a generalised maximum likelihood approach. A full theoretical derivation is presented, together with a closed form analytical performance evaluation. The technique is compared to other known polarimetric segmentation schemes by application to a polarimetric SAR image of agricultural areas. A complete characterisation of the technique is provided in terms of polarimetric sensitivity and memory requirements.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The paper presents an optimised polarimetric segmentation technique for synthetic aperture radar (SAR) images, based on a generalised maximum likelihood approach. A full theoretical derivation is presented, together with a closed form analytical performance evaluation. The technique is compared to other known polarimetric segmentation schemes by application to a polarimetric SAR image of agricultural areas. A complete characterisation of the technique is provided in terms of polarimetric sensitivity and memory requirements.
基于分割的极化SAR图像最优分类
提出了一种基于广义极大似然方法的合成孔径雷达(SAR)图像极化分割优化技术。给出了完整的理论推导,并给出了封闭形式的分析性能评价。该技术与其他已知的极化分割方案进行了比较,应用于农业地区的极化SAR图像。在极化灵敏度和存储要求方面提供了该技术的完整特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信