Kensuke Katori, Kenta Yamamoto, Ippei Suzuki, Tatsuki Fushimi, Y. Ochiai
{"title":"Crossed half-silvered Mirror Array: Fabrication and Evaluation of a See-Through Capable DIY Crossed Mirror Array","authors":"Kensuke Katori, Kenta Yamamoto, Ippei Suzuki, Tatsuki Fushimi, Y. Ochiai","doi":"10.1145/3588028.3603644","DOIUrl":null,"url":null,"abstract":"Crossed mirror arrays (CMAs) have recently been employed in simple retinal projection augmented reality (AR) devices owing to their wide field of view and nonfocal nature. However, they remain inadequate for AR devices for everyday use owing to the limited visibility of the physical environment. This study aims to enhance the transmittance of the CMA by fabricating it with half-silvered acrylic mirrors. Further, we evaluated the transmittance and quality of the retinal display. The proposed CMA successfully achieved sufficient retinal projection and higher see-through capability, making it more suitable for use in AR devices than conventional CMAs.","PeriodicalId":113397,"journal":{"name":"ACM SIGGRAPH 2023 Posters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588028.3603644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Crossed mirror arrays (CMAs) have recently been employed in simple retinal projection augmented reality (AR) devices owing to their wide field of view and nonfocal nature. However, they remain inadequate for AR devices for everyday use owing to the limited visibility of the physical environment. This study aims to enhance the transmittance of the CMA by fabricating it with half-silvered acrylic mirrors. Further, we evaluated the transmittance and quality of the retinal display. The proposed CMA successfully achieved sufficient retinal projection and higher see-through capability, making it more suitable for use in AR devices than conventional CMAs.