David Langerman, A. Johnson, Kyle Buettner, A. George
{"title":"Beyond Floating-Point Ops: CNN Performance Prediction with Critical Datapath Length","authors":"David Langerman, A. Johnson, Kyle Buettner, A. George","doi":"10.1109/HPEC43674.2020.9286182","DOIUrl":null,"url":null,"abstract":"We propose Critical Datapath Length (CDL), a powerful, interpretable metric of neural-network models that enables accurate execution time prediction on parallel device architectures. CDL addresses the fact that the total number of floating-point operations (FLOPs) in a model is an inconsistent predictor of real execution time due to the highly parallel nature of tensor operations and hardware accelerators. Our results show that, on GPUs, CDL correlates to execution time significantly better than FLOPs, making it a useful performance predictor.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We propose Critical Datapath Length (CDL), a powerful, interpretable metric of neural-network models that enables accurate execution time prediction on parallel device architectures. CDL addresses the fact that the total number of floating-point operations (FLOPs) in a model is an inconsistent predictor of real execution time due to the highly parallel nature of tensor operations and hardware accelerators. Our results show that, on GPUs, CDL correlates to execution time significantly better than FLOPs, making it a useful performance predictor.