Beyond Floating-Point Ops: CNN Performance Prediction with Critical Datapath Length

David Langerman, A. Johnson, Kyle Buettner, A. George
{"title":"Beyond Floating-Point Ops: CNN Performance Prediction with Critical Datapath Length","authors":"David Langerman, A. Johnson, Kyle Buettner, A. George","doi":"10.1109/HPEC43674.2020.9286182","DOIUrl":null,"url":null,"abstract":"We propose Critical Datapath Length (CDL), a powerful, interpretable metric of neural-network models that enables accurate execution time prediction on parallel device architectures. CDL addresses the fact that the total number of floating-point operations (FLOPs) in a model is an inconsistent predictor of real execution time due to the highly parallel nature of tensor operations and hardware accelerators. Our results show that, on GPUs, CDL correlates to execution time significantly better than FLOPs, making it a useful performance predictor.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose Critical Datapath Length (CDL), a powerful, interpretable metric of neural-network models that enables accurate execution time prediction on parallel device architectures. CDL addresses the fact that the total number of floating-point operations (FLOPs) in a model is an inconsistent predictor of real execution time due to the highly parallel nature of tensor operations and hardware accelerators. Our results show that, on GPUs, CDL correlates to execution time significantly better than FLOPs, making it a useful performance predictor.
超越浮点运算:关键数据路径长度的CNN性能预测
我们提出关键数据路径长度(CDL),这是一种强大的、可解释的神经网络模型度量,可以在并行设备架构上准确预测执行时间。CDL解决了这样一个事实,即由于张量操作和硬件加速器的高度并行特性,模型中的浮点操作(flop)总数是一个不一致的实际执行时间预测器。我们的结果表明,在gpu上,CDL与执行时间的相关性明显优于FLOPs,使其成为有用的性能预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信