Functional Perceptron using Multi-dimensional Activation Functions

Chungheon Yi, Wonik Choi, Youngjun Jeon, Ling Liu
{"title":"Functional Perceptron using Multi-dimensional Activation Functions","authors":"Chungheon Yi, Wonik Choi, Youngjun Jeon, Ling Liu","doi":"10.1109/CogMI50398.2020.00012","DOIUrl":null,"url":null,"abstract":"We propose a new perceptron, called functional perceptron, which consists of a multi-dimensional activation function capable of learning a specific function. The functional perceptron does not use the traditional activation functions such as Sigmoid and ReLU. Instead, the proposed perceptron trains a function in a multi-dimensional space to accomplish a specific functionality and uses it as the learning task specific activation function. To realize this perceptron, we teach a comparison functionality to a multi-dimensional function by training two comparable inputs and producing a value of similarity as output. In order to show the efficacy of the functional perceptron, we apply the proposed perceptron to the XOR problem, the IRIS classification problem and an indoor positioning problem based on multi-signal fingerprints. Extensive experiments show that the proposed perceptron achieves about 96% accuracy in the IRIS classification and shows 1.737m accuracy in indoor positioning problem.","PeriodicalId":360326,"journal":{"name":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI50398.2020.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new perceptron, called functional perceptron, which consists of a multi-dimensional activation function capable of learning a specific function. The functional perceptron does not use the traditional activation functions such as Sigmoid and ReLU. Instead, the proposed perceptron trains a function in a multi-dimensional space to accomplish a specific functionality and uses it as the learning task specific activation function. To realize this perceptron, we teach a comparison functionality to a multi-dimensional function by training two comparable inputs and producing a value of similarity as output. In order to show the efficacy of the functional perceptron, we apply the proposed perceptron to the XOR problem, the IRIS classification problem and an indoor positioning problem based on multi-signal fingerprints. Extensive experiments show that the proposed perceptron achieves about 96% accuracy in the IRIS classification and shows 1.737m accuracy in indoor positioning problem.
基于多维激活函数的函数感知器
我们提出了一种新的感知器,称为功能感知器,它由一个能够学习特定函数的多维激活函数组成。函数感知器不使用传统的激活函数,如Sigmoid和ReLU。相反,所提出的感知器在多维空间中训练一个函数来完成特定的功能,并将其用作学习任务的特定激活函数。为了实现这个感知器,我们通过训练两个可比较的输入并产生一个相似值作为输出来教一个比较函数到一个多维函数。为了显示功能感知器的有效性,我们将所提出的感知器应用于异或问题、IRIS分类问题和基于多信号指纹的室内定位问题。大量实验表明,该感知器在IRIS分类中准确率约为96%,在室内定位问题中准确率为1.737m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信