Multiple Network Embedding into Hybercubes

Ajay K. Gupta, Susanne E. Hambrusch
{"title":"Multiple Network Embedding into Hybercubes","authors":"Ajay K. Gupta, Susanne E. Hambrusch","doi":"10.1109/DMCC.1990.556400","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we consider the problem of embedding r guest networks G0, ..., Gr−1, into a k-dimensional hypercube H so that every processor of H is assigned at most r guest processors and dilation and congestion are minimized. Network G, can be a complete binary tree, a leap tree, a linear array, or a mesh. We show that r such guest networks can simultaneously be embedded into H without a significant increase in dilation and congestion compared to the embedding of a single network when r ≤ k. For r > k, the increase in the cost measures is proportional to r/k. We consider two models which differ in the requirements imposed on the r guest processors assigned to a processor of H.","PeriodicalId":204431,"journal":{"name":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1990.556400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract In this paper we consider the problem of embedding r guest networks G0, ..., Gr−1, into a k-dimensional hypercube H so that every processor of H is assigned at most r guest processors and dilation and congestion are minimized. Network G, can be a complete binary tree, a leap tree, a linear array, or a mesh. We show that r such guest networks can simultaneously be embedded into H without a significant increase in dilation and congestion compared to the embedding of a single network when r ≤ k. For r > k, the increase in the cost measures is proportional to r/k. We consider two models which differ in the requirements imposed on the r guest processors assigned to a processor of H.
多个网络嵌入到Hybercubes中
摘要:本文研究了嵌入访客网络G0,…, Gr−1,分解成一个k维的超立方体H,使得H的每个处理器最多分配r个来宾处理器,使膨胀和拥塞最小化。网络G,可以是一个完整的二叉树,一个跳跃树,一个线性阵列,或一个网格。我们表明,当r≤k时,与嵌入单个网络相比,r个这样的来宾网络可以同时嵌入到H中,而不会显著增加扩张和拥塞。对于r > k,成本措施的增加与r/k成正比。我们考虑两种不同的模型,它们对分配给H处理器的r个来宾处理器的要求不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信