An analytical dynamic scaling of supply voltage and body bias exploiting memory stall time variation

Jungsoo Kim, Younghoon Lee, S. Yoo, C. Kyung
{"title":"An analytical dynamic scaling of supply voltage and body bias exploiting memory stall time variation","authors":"Jungsoo Kim, Younghoon Lee, S. Yoo, C. Kyung","doi":"10.1109/ASPDAC.2010.5419820","DOIUrl":null,"url":null,"abstract":"Success of workload prediction, which is critical in achieving low energy consumption via dynamic voltage and frequency scaling (DVFS), depends on the accuracy of modeling the major sources of workload variation. Among them, memory stall time, whose variation is significant especially in case of memory-bound applications, has been mostly neglected or handled in too simplistic assumptions in previous works. In this paper, we present an analytical DVFS method which takes into account variations in both computation and memory stall cycles. The proposed method reduces leakage power consumption as well as switching power consumption through combined Vdd/Vbb scaling. Experimental results on MPEG4 and H.264 decoder have shown that, compared to previous methods [3] and [6], our method achieves up to additional 30.0% and 15.8% energy reductions, respectively.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Success of workload prediction, which is critical in achieving low energy consumption via dynamic voltage and frequency scaling (DVFS), depends on the accuracy of modeling the major sources of workload variation. Among them, memory stall time, whose variation is significant especially in case of memory-bound applications, has been mostly neglected or handled in too simplistic assumptions in previous works. In this paper, we present an analytical DVFS method which takes into account variations in both computation and memory stall cycles. The proposed method reduces leakage power consumption as well as switching power consumption through combined Vdd/Vbb scaling. Experimental results on MPEG4 and H.264 decoder have shown that, compared to previous methods [3] and [6], our method achieves up to additional 30.0% and 15.8% energy reductions, respectively.
利用记忆失速时间变化分析电源电压和体偏置的动态标度
工作负载预测是通过动态电压和频率缩放(DVFS)实现低能耗的关键,其成功与否取决于对工作负载变化的主要来源建模的准确性。其中,内存失速时间的变化很大,特别是在内存受限的应用程序中,在以往的工作中大多被忽略或过于简单的假设所处理。在本文中,我们提出了一种考虑计算和内存失速周期变化的解析DVFS方法。该方法通过Vdd/Vbb组合缩放,降低了泄漏功耗和开关功耗。在MPEG4和H.264解码器上的实验结果表明,与之前的方法[3]和[6]相比,我们的方法分别实现了30.0%和15.8%的额外能量降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信