Intelligent meter placement for power quality estimation in smart grid

Sardar Ali, Kyle Weston, D. Marinakis, Kui Wu
{"title":"Intelligent meter placement for power quality estimation in smart grid","authors":"Sardar Ali, Kyle Weston, D. Marinakis, Kui Wu","doi":"10.1109/SmartGridComm.2013.6688015","DOIUrl":null,"url":null,"abstract":"Power quality is a crucial component of power grid reliability. Due to the high cost of measurement devices, the monitoring of power quality is non-trivial. Our objective is to deploy measurement devices on suitable power links to reduce the uncertainty of power quality estimation on non-monitored power links. To realize our objective, we first model the power grid network as a data-driven network. Using entropy-based measurements and Bayesian network models, we propose different algorithms which identify the most suitable power links for power meter placement. Our proposed solution is efficient, and has the potential to significantly reduce the uncertainty of power quality values on non-monitored power links.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6688015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Power quality is a crucial component of power grid reliability. Due to the high cost of measurement devices, the monitoring of power quality is non-trivial. Our objective is to deploy measurement devices on suitable power links to reduce the uncertainty of power quality estimation on non-monitored power links. To realize our objective, we first model the power grid network as a data-driven network. Using entropy-based measurements and Bayesian network models, we propose different algorithms which identify the most suitable power links for power meter placement. Our proposed solution is efficient, and has the potential to significantly reduce the uncertainty of power quality values on non-monitored power links.
面向智能电网电能质量评估的智能电表安置
电能质量是电网可靠性的重要组成部分。由于测量设备的高成本,电能质量的监测是非常重要的。我们的目标是在合适的电源链路上部署测量设备,以减少非监控电源链路上电能质量估计的不确定性。为了实现我们的目标,我们首先将电网网络建模为数据驱动网络。利用基于熵的测量和贝叶斯网络模型,我们提出了不同的算法来确定最适合功率计放置的电源链路。我们提出的解决方案是高效的,并且有可能显著减少非监控电源链路上电能质量值的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信