A New Method for Web Service Recommendation Based on QoS Prediction

M. A. Salam
{"title":"A New Method for Web Service Recommendation Based on QoS Prediction","authors":"M. A. Salam","doi":"10.54216/jisiot.000101","DOIUrl":null,"url":null,"abstract":"As service-oriented architecture gains in popularity and grows in popularity, Web service recommendation and composition have become more important topics for research. Accurately predicting individualized QoS recommendations for recommending web services is a difficult task because of the inconsistency of the Internet and the scarcity of information regarding QoS history. Our team suggests a new framework for QoS values’ prediction and also presents two methods for clustering, User_BC and Service_BC, to support QoS prediction accuracy. Hierarchical clustering is used, based on the QoS dataset of PlanetLab1 (that) contains 200 service-user response time values, with 1,597 service values overall. In our research, we've found that our clustering-based methods beat other popular algorithms in detailed experimental comparisons and analyses.","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As service-oriented architecture gains in popularity and grows in popularity, Web service recommendation and composition have become more important topics for research. Accurately predicting individualized QoS recommendations for recommending web services is a difficult task because of the inconsistency of the Internet and the scarcity of information regarding QoS history. Our team suggests a new framework for QoS values’ prediction and also presents two methods for clustering, User_BC and Service_BC, to support QoS prediction accuracy. Hierarchical clustering is used, based on the QoS dataset of PlanetLab1 (that) contains 200 service-user response time values, with 1,597 service values overall. In our research, we've found that our clustering-based methods beat other popular algorithms in detailed experimental comparisons and analyses.
基于QoS预测的Web服务推荐新方法
随着面向服务的体系结构越来越受欢迎,Web服务推荐和组合已成为更重要的研究主题。由于Internet的不一致性和QoS历史信息的稀缺性,准确预测个性化的QoS建议以推荐web服务是一项困难的任务。我们的团队提出了一个新的QoS值预测框架,并提出了User_BC和Service_BC两种聚类方法来支持QoS预测精度。基于PlanetLab1的QoS数据集,使用分层聚类,该数据集包含200个服务-用户响应时间值,总共包含1,597个服务值。在我们的研究中,我们发现我们基于聚类的方法在详细的实验比较和分析中击败了其他流行的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信