Word Embedding Interpretation using Co-Clustering

Zainab Albujasim, D. Inkpen, Yuhong Guo
{"title":"Word Embedding Interpretation using Co-Clustering","authors":"Zainab Albujasim, D. Inkpen, Yuhong Guo","doi":"10.5121/csit.2022.122210","DOIUrl":null,"url":null,"abstract":"Word embedding is the foundation of modern language processing (NLP). In the last few decades, word representation has evolved remarkably resulting in an impressive performance in NLP downstream applications. Yet, word embedding's interpretability remains a challenge. In this paper, We propose a simple technique to interpret word embedding. Our method is based on post-processing technique to improve the quality of word embedding and reveal the hidden structure in these embeddings. We deploy Co-clustering method to reveal the hidden structure of word embedding and detect sub-matrices between word meaning and specific dimensions. Empirical evaluation on several benchmarks shows that our method achieves competitive results compared to original word embedding.","PeriodicalId":153862,"journal":{"name":"Signal Processing and Vision","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.122210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Word embedding is the foundation of modern language processing (NLP). In the last few decades, word representation has evolved remarkably resulting in an impressive performance in NLP downstream applications. Yet, word embedding's interpretability remains a challenge. In this paper, We propose a simple technique to interpret word embedding. Our method is based on post-processing technique to improve the quality of word embedding and reveal the hidden structure in these embeddings. We deploy Co-clustering method to reveal the hidden structure of word embedding and detect sub-matrices between word meaning and specific dimensions. Empirical evaluation on several benchmarks shows that our method achieves competitive results compared to original word embedding.
基于共聚类的词嵌入解释
词嵌入是现代语言处理(NLP)的基础。在过去的几十年里,单词表示在NLP下游应用程序中取得了令人印象深刻的性能。然而,词嵌入的可解释性仍然是一个挑战。在本文中,我们提出了一种简单的解释词嵌入的技术。我们的方法是基于后处理技术来提高词嵌入的质量,并揭示这些嵌入中的隐藏结构。我们采用共聚类方法揭示词嵌入的隐藏结构,并检测词义与特定维度之间的子矩阵。对几个基准的实证评估表明,与原始词嵌入相比,我们的方法取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信