A parallel classification method for genomic and proteomic problems

M. Guarracino, C. Cifarelli, O. Şeref, P. Pardalos
{"title":"A parallel classification method for genomic and proteomic problems","authors":"M. Guarracino, C. Cifarelli, O. Şeref, P. Pardalos","doi":"10.1109/AINA.2006.47","DOIUrl":null,"url":null,"abstract":"Classification is one of the most widely used method in data mining with numerous applications in biomedicine. The scope and the resolution of data involved in many real life applications require very efficient implementations of classification methods, developed to run on parallel or distributed computational systems. In this study, a parallel implementation of an efficient algorithm that is based on regularized general eigenvalue classification is introduced. The proposed implementation is tested on a very large scale genomic data base and preliminary results regarding efficiency are presented.","PeriodicalId":185969,"journal":{"name":"20th International Conference on Advanced Information Networking and Applications - Volume 1 (AINA'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th International Conference on Advanced Information Networking and Applications - Volume 1 (AINA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2006.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Classification is one of the most widely used method in data mining with numerous applications in biomedicine. The scope and the resolution of data involved in many real life applications require very efficient implementations of classification methods, developed to run on parallel or distributed computational systems. In this study, a parallel implementation of an efficient algorithm that is based on regularized general eigenvalue classification is introduced. The proposed implementation is tested on a very large scale genomic data base and preliminary results regarding efficiency are presented.
基因组学和蛋白质组学问题的并行分类方法
分类是数据挖掘中应用最广泛的方法之一,在生物医学领域有着广泛的应用。许多实际应用程序中涉及的数据范围和分辨率需要非常有效的分类方法实现,这些方法是为在并行或分布式计算系统上运行而开发的。本文介绍了一种基于正则化一般特征值分类的高效算法的并行实现。在一个非常大规模的基因组数据库上对所提出的实现进行了测试,并给出了有关效率的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信