Vehicle trajectory prediction based on LSTM network

Zhifang Yang, Dun Liu, Li Ma
{"title":"Vehicle trajectory prediction based on LSTM network","authors":"Zhifang Yang, Dun Liu, Li Ma","doi":"10.1109/AICIT55386.2022.9930177","DOIUrl":null,"url":null,"abstract":"In a complex traffic environment, predicting the trajectory of surrounding vehicles in the driver’s line of sight can greatly reduce the possibility of various traffic accidents and play an auxiliary role in the driver’s decision making. The motion of predicted vehicles is constrained by the traffic environment, that is, the motion of adjacent vehicles and the relative spatial positions between vehicles. This paper mainly studies the behavior prediction of vehicles on the expressway. Based on the social convolutional pooling LSTM network (CS-LSTM), a CS-LSTM network with an attention mechanism is proposed, which assigns different weights to the fusion features and improves the accuracy of the trajectory prediction of surrounding vehicles. This article evaluates the model on a publicly available NGSIM dataset. The results show that the proposed algorithm is more accurate than other algorithms in predicting the future trajectory of vehicles.","PeriodicalId":231070,"journal":{"name":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICIT55386.2022.9930177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In a complex traffic environment, predicting the trajectory of surrounding vehicles in the driver’s line of sight can greatly reduce the possibility of various traffic accidents and play an auxiliary role in the driver’s decision making. The motion of predicted vehicles is constrained by the traffic environment, that is, the motion of adjacent vehicles and the relative spatial positions between vehicles. This paper mainly studies the behavior prediction of vehicles on the expressway. Based on the social convolutional pooling LSTM network (CS-LSTM), a CS-LSTM network with an attention mechanism is proposed, which assigns different weights to the fusion features and improves the accuracy of the trajectory prediction of surrounding vehicles. This article evaluates the model on a publicly available NGSIM dataset. The results show that the proposed algorithm is more accurate than other algorithms in predicting the future trajectory of vehicles.
基于LSTM网络的车辆轨迹预测
在复杂的交通环境中,在驾驶员视线范围内预测周围车辆的行驶轨迹,可以大大降低各种交通事故发生的可能性,对驾驶员的决策起到辅助作用。预测车辆的运动受到交通环境的约束,即相邻车辆的运动和车辆之间的相对空间位置。本文主要研究高速公路上车辆的行为预测问题。在社会卷积池化LSTM网络(CS-LSTM)的基础上,提出了一种具有关注机制的CS-LSTM网络,该网络对融合特征赋予不同的权重,提高了对周围车辆轨迹预测的精度。本文在一个公开可用的NGSIM数据集上评估了该模型。结果表明,该算法对车辆未来轨迹的预测精度高于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信