Intelligent classification and identification of radar jamming signals

Dongxia Li, Yahui Shi, Yangdong Sun, Bin Zhang
{"title":"Intelligent classification and identification of radar jamming signals","authors":"Dongxia Li, Yahui Shi, Yangdong Sun, Bin Zhang","doi":"10.1117/12.2667248","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of intelligent classification and recognition of radar jamming signals, the convolutional neural network structure is studied. By optimizing the basic network, the normalization layer and activation layer is added to the LENET-5 structure to improve the accuracy of recognition results. The linear frequency modulation signal and amplitude modulation interference, frequency modulation interference, comb spectrum interference, slice reconstruction interference, intermittent sampling and forwarding interference are analyzed. Six signal models are used to generate data sets, and intelligent methods are adopted to realize classification and recognition.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"12566 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of intelligent classification and recognition of radar jamming signals, the convolutional neural network structure is studied. By optimizing the basic network, the normalization layer and activation layer is added to the LENET-5 structure to improve the accuracy of recognition results. The linear frequency modulation signal and amplitude modulation interference, frequency modulation interference, comb spectrum interference, slice reconstruction interference, intermittent sampling and forwarding interference are analyzed. Six signal models are used to generate data sets, and intelligent methods are adopted to realize classification and recognition.
雷达干扰信号的智能分类与识别
针对雷达干扰信号的智能分类与识别问题,研究了卷积神经网络结构。通过优化基本网络,在LENET-5结构中加入归一化层和激活层,提高识别结果的准确率。分析了线性调频信号的调幅干扰、调频干扰、梳状频谱干扰、切片重构干扰、间歇采样和转发干扰。采用6种信号模型生成数据集,采用智能方法实现分类识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信