Soheil Mohseni, A. Brent, Daniel Burmester, Will N. Browne
{"title":"A Game-Theoretic Approach to Model Interruptible Loads: Application to Micro-Grid Planning","authors":"Soheil Mohseni, A. Brent, Daniel Burmester, Will N. Browne","doi":"10.1109/PESGM41954.2020.9281836","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel modeling approach for the efficient integration of demand response (DR) resources into the equipment capacity-planning problem of micro-grids based on Game Theory. The main advantage of this approach is that it determines the DR events based on the day-ahead system state estimates (in contrast to the conventional exogenetic demand-side management approaches), whilst protecting the customers’ welfare. A battery-less, 100%-renewable, gridindependent micro-grid is conceptualized, and the town Ohakune, New Zealand is used as a test-case to evaluate the effectiveness of the proposed modeling framework. The numerical simulation results indicate that the proposed approach achieves substantial (12.59%) savings in the life-cycle cost of the target system, as compared to the case where a time-of-use DR is implemented.","PeriodicalId":106476,"journal":{"name":"2020 IEEE Power & Energy Society General Meeting (PESGM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM41954.2020.9281836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper proposes a novel modeling approach for the efficient integration of demand response (DR) resources into the equipment capacity-planning problem of micro-grids based on Game Theory. The main advantage of this approach is that it determines the DR events based on the day-ahead system state estimates (in contrast to the conventional exogenetic demand-side management approaches), whilst protecting the customers’ welfare. A battery-less, 100%-renewable, gridindependent micro-grid is conceptualized, and the town Ohakune, New Zealand is used as a test-case to evaluate the effectiveness of the proposed modeling framework. The numerical simulation results indicate that the proposed approach achieves substantial (12.59%) savings in the life-cycle cost of the target system, as compared to the case where a time-of-use DR is implemented.