The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate

G. Golub, V. Pereyra
{"title":"The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate","authors":"G. Golub, V. Pereyra","doi":"10.1137/0710036","DOIUrl":null,"url":null,"abstract":"For given data ($t_i\\ , y_i), i=1, \\ldots ,m$ , we consider the least squares fit of nonlinear models of the form F($\\underset ~\\to a\\ , \\underset ~\\to \\alpha\\ ; t) = \\sum_{j=1}^{n}\\ g_j (\\underset ~\\to a ) \\varphi_j (\\underset ~\\to \\alpha\\ ; t) , \\underset ~\\to a\\ \\epsilon R^s\\ , \\underset ~\\to \\alpha\\ \\epsilon R^k\\ $. For this purpose we study the minimization of the nonlinear functional r($\\underset ~\\to a\\ , \\underset ~\\to \\alpha ) = \\sum_{i=1}^{m} {(y_i - F(\\underset ~\\to a , \\underset ~\\to \\alpha , t_i))}^2$. It is shown that by defining the matrix ${ \\{\\Phi (\\underset ~\\to \\alpha\\} }_{i,j} = \\varphi_j (\\underset ~\\to \\alpha ; t_i)$ , and the modified functional $r_2(\\underset ~\\to \\alpha ) = \\l\\ \\underset ~\\to y\\ - \\Phi (\\underset ~\\to \\alpha )\\Phi^+(\\underset ~\\to \\alpha ) \\underset ~\\to y \\l_2^2$, it is possible to optimize first with respect to the parameters $\\underset ~\\to \\alpha$ , and then to obtain, a posteriori, the optimal parameters $\\overset ^\\to {\\underset ~\\to a}$. The matrix $\\Phi^+(\\underset ~\\to \\alpha$) is the Moore-Penrose generalized inverse of $\\Phi (\\underset ~\\to \\alpha$), and we develop formulas for its Frechet derivative under the hypothesis that $\\Phi (\\underset ~\\to \\alpha$) is of constant (though not necessarily full) rank. From these formulas we readily obtain the derivatives of the orthogonal projectors associated with $\\Phi (\\underset ~\\to \\alpha$), and also that of the functional $r_2(\\underset ~\\to \\alpha$). Detailed algorithms are presented which make extensive use of well-known reliable linear least squares techniques, and numerical results and comparisons are given. These results are generalizations of those of H. D. Scolnik [1971].","PeriodicalId":250823,"journal":{"name":"Milestones in Matrix Computation","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1972-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"882","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milestones in Matrix Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0710036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 882

Abstract

For given data ($t_i\ , y_i), i=1, \ldots ,m$ , we consider the least squares fit of nonlinear models of the form F($\underset ~\to a\ , \underset ~\to \alpha\ ; t) = \sum_{j=1}^{n}\ g_j (\underset ~\to a ) \varphi_j (\underset ~\to \alpha\ ; t) , \underset ~\to a\ \epsilon R^s\ , \underset ~\to \alpha\ \epsilon R^k\ $. For this purpose we study the minimization of the nonlinear functional r($\underset ~\to a\ , \underset ~\to \alpha ) = \sum_{i=1}^{m} {(y_i - F(\underset ~\to a , \underset ~\to \alpha , t_i))}^2$. It is shown that by defining the matrix ${ \{\Phi (\underset ~\to \alpha\} }_{i,j} = \varphi_j (\underset ~\to \alpha ; t_i)$ , and the modified functional $r_2(\underset ~\to \alpha ) = \l\ \underset ~\to y\ - \Phi (\underset ~\to \alpha )\Phi^+(\underset ~\to \alpha ) \underset ~\to y \l_2^2$, it is possible to optimize first with respect to the parameters $\underset ~\to \alpha$ , and then to obtain, a posteriori, the optimal parameters $\overset ^\to {\underset ~\to a}$. The matrix $\Phi^+(\underset ~\to \alpha$) is the Moore-Penrose generalized inverse of $\Phi (\underset ~\to \alpha$), and we develop formulas for its Frechet derivative under the hypothesis that $\Phi (\underset ~\to \alpha$) is of constant (though not necessarily full) rank. From these formulas we readily obtain the derivatives of the orthogonal projectors associated with $\Phi (\underset ~\to \alpha$), and also that of the functional $r_2(\underset ~\to \alpha$). Detailed algorithms are presented which make extensive use of well-known reliable linear least squares techniques, and numerical results and comparisons are given. These results are generalizations of those of H. D. Scolnik [1971].
变量分离的伪逆和非线性最小二乘问题的微分
对于给定的数据($t_i\ , y_i), i=1, \ldots ,m$),我们考虑形式为F($\underset ~\to a\ , \underset ~\to \alpha\ ; t) = \sum_{j=1}^{n}\ g_j (\underset ~\to a ) \varphi_j (\underset ~\to \alpha\ ; t) , \underset ~\to a\ \epsilon R^s\ , \underset ~\to \alpha\ \epsilon R^k\ $)的非线性模型的最小二乘拟合。为此,我们研究了非线性泛函r($\underset ~\to a\ , \underset ~\to \alpha ) = \sum_{i=1}^{m} {(y_i - F(\underset ~\to a , \underset ~\to \alpha , t_i))}^2$)的最小化。结果表明,通过定义矩阵${ \{\Phi (\underset ~\to \alpha\} }_{i,j} = \varphi_j (\underset ~\to \alpha ; t_i)$和修正函数$r_2(\underset ~\to \alpha ) = \l\ \underset ~\to y\ - \Phi (\underset ~\to \alpha )\Phi^+(\underset ~\to \alpha ) \underset ~\to y \l_2^2$,可以先对参数$\underset ~\to \alpha$进行优化,然后后验得到最优参数$\overset ^\to {\underset ~\to a}$。矩阵$\Phi^+(\underset ~\to \alpha$)是$\Phi (\underset ~\to \alpha$)的Moore-Penrose广义逆,并且我们在$\Phi (\underset ~\to \alpha$)是常数(虽然不一定是满)秩的假设下开发了它的Frechet导数的公式。从这些公式中,我们很容易得到与$\Phi (\underset ~\to \alpha$)相关的正交投影的导数,以及函数$r_2(\underset ~\to \alpha$)的导数。详细的算法广泛地利用了众所周知的可靠的线性最小二乘技术,并给出了数值结果和比较。这些结果是对h.d. Scolnik[1971]的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信