High dimensional neurofuzzy systems: overcoming the curse of dimensionality

Martin Brown, K. Bossley, D. Mills, Chris J. Harris
{"title":"High dimensional neurofuzzy systems: overcoming the curse of dimensionality","authors":"Martin Brown, K. Bossley, D. Mills, Chris J. Harris","doi":"10.1109/FUZZY.1995.409976","DOIUrl":null,"url":null,"abstract":"Many researchers do not appreciate the problems in building high-dimensional fuzzy models or control surfaces, yet this task has occupied researchers in several fields for the past thirty years. The problems occur due to the lack of both available training data and the required computational resources necessary for building and calculating the response of the model. This paper outlines several techniques for partially overcoming the curse of dimensionality associated with high-dimensional data modelling problems and compares and contrasts them with several algorithms developed in the statistical community. The work is intended to outline both conventional concepts which can be usefully applied in neurofuzzy models and new developments in this field.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

Many researchers do not appreciate the problems in building high-dimensional fuzzy models or control surfaces, yet this task has occupied researchers in several fields for the past thirty years. The problems occur due to the lack of both available training data and the required computational resources necessary for building and calculating the response of the model. This paper outlines several techniques for partially overcoming the curse of dimensionality associated with high-dimensional data modelling problems and compares and contrasts them with several algorithms developed in the statistical community. The work is intended to outline both conventional concepts which can be usefully applied in neurofuzzy models and new developments in this field.<>
高维神经模糊系统:克服维度的诅咒
许多研究人员没有意识到建立高维模糊模型或控制面的问题,然而在过去的三十年里,这项任务已经占据了几个领域的研究人员。问题的发生是由于缺乏可用的训练数据和构建和计算模型响应所需的计算资源。本文概述了几种用于部分克服与高维数据建模问题相关的维数诅咒的技术,并将它们与统计界开发的几种算法进行了比较和对比。这项工作旨在概述可有效应用于神经模糊模型的传统概念以及该领域的新发展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信