Key-Threshold based spiking neural network

A. Gavrilov, Alexandr A. Maliavko, A. Yakimenko
{"title":"Key-Threshold based spiking neural network","authors":"A. Gavrilov, Alexandr A. Maliavko, A. Yakimenko","doi":"10.1109/RPC.2017.8168069","DOIUrl":null,"url":null,"abstract":"In the paper a novel model of Key-Threshold based Spiking Neural Network (KTSNN) is proposed. This neural network consists of quasi-neurons oriented to recognize any key-spikes distributed in time (sequence of spikes) or in space (in synapses). Every neuron aims to recognize key (template of spikes) stored in its memory and to react by output spike at successfully detection. Software implementation of this model is suggested. Possible methods of learning, implementation and usage of this model are discussed.","PeriodicalId":144625,"journal":{"name":"2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RPC.2017.8168069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the paper a novel model of Key-Threshold based Spiking Neural Network (KTSNN) is proposed. This neural network consists of quasi-neurons oriented to recognize any key-spikes distributed in time (sequence of spikes) or in space (in synapses). Every neuron aims to recognize key (template of spikes) stored in its memory and to react by output spike at successfully detection. Software implementation of this model is suggested. Possible methods of learning, implementation and usage of this model are discussed.
基于键阈值的脉冲神经网络
本文提出了一种新的基于键阈值的峰值神经网络模型。该神经网络由准神经元组成,用于识别在时间(峰值序列)或空间(突触)上分布的任何键峰值。每个神经元的目标是识别存储在其记忆中的键(峰值模板),并在成功检测到时通过输出峰值做出反应。提出了该模型的软件实现方案。讨论了学习、实现和使用该模型的可能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信