Empirical Activation Function Effects on Unsupervised Convolutional LSTM Learning

Nelly Elsayed, A. Maida, M. Bayoumi
{"title":"Empirical Activation Function Effects on Unsupervised Convolutional LSTM Learning","authors":"Nelly Elsayed, A. Maida, M. Bayoumi","doi":"10.1109/ICTAI.2018.00060","DOIUrl":null,"url":null,"abstract":"This paper empirically evaluates and analyzes the effect of the choice of recurrent activation and unit activation functions on the unsupervised convolutional LSTM learning process. The goal of this work is to provide guidance for selecting the optimal non-linear activation function for the convolutional LSTM models which target the video prediction problem. This paper shows an empirical analysis of different non-linear activation functions that are commonly implemented in different deep learning APIs. We used the moving MNIST dataset as the most common benchmark for video prediction problems.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper empirically evaluates and analyzes the effect of the choice of recurrent activation and unit activation functions on the unsupervised convolutional LSTM learning process. The goal of this work is to provide guidance for selecting the optimal non-linear activation function for the convolutional LSTM models which target the video prediction problem. This paper shows an empirical analysis of different non-linear activation functions that are commonly implemented in different deep learning APIs. We used the moving MNIST dataset as the most common benchmark for video prediction problems.
经验激活函数对无监督卷积LSTM学习的影响
本文对循环激活函数和单元激活函数的选择对无监督卷积LSTM学习过程的影响进行了实证评价和分析。本工作的目的是为针对视频预测问题的卷积LSTM模型选择最优非线性激活函数提供指导。本文对不同深度学习api中常用的非线性激活函数进行了实证分析。我们使用移动的MNIST数据集作为视频预测问题的最常见基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信