Hierarchical sparse brain network estimation

A. Seghouane, Muhammad Usman Khalid
{"title":"Hierarchical sparse brain network estimation","authors":"A. Seghouane, Muhammad Usman Khalid","doi":"10.1109/MLSP.2012.6349756","DOIUrl":null,"url":null,"abstract":"Brain networks explore the dependence relationships between brain regions under consideration through the estimation of the precision matrix. An approach based on linear regression is adopted here for estimating the partial correlation matrix from functional brain imaging data. Knowing that brain networks are sparse and hierarchical, the l1-norm penalized regression has been used to estimate sparse brain networks. Although capable of including the sparsity information, the l1-norm penalty alone doesn't incorporate the hierarchical structure prior information when estimating brain networks. In this paper, a new l1 regularization method that applies the sparsity constraint at hierarchical levels is proposed and its implementation described. This hierarchical sparsity approach has the advantage of generating brain networks that are sparse at all levels of the hierarchy. The performance of the proposed approach in comparison to other existing methods is illustrated on real fMRI data.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Brain networks explore the dependence relationships between brain regions under consideration through the estimation of the precision matrix. An approach based on linear regression is adopted here for estimating the partial correlation matrix from functional brain imaging data. Knowing that brain networks are sparse and hierarchical, the l1-norm penalized regression has been used to estimate sparse brain networks. Although capable of including the sparsity information, the l1-norm penalty alone doesn't incorporate the hierarchical structure prior information when estimating brain networks. In this paper, a new l1 regularization method that applies the sparsity constraint at hierarchical levels is proposed and its implementation described. This hierarchical sparsity approach has the advantage of generating brain networks that are sparse at all levels of the hierarchy. The performance of the proposed approach in comparison to other existing methods is illustrated on real fMRI data.
分层稀疏脑网络估计
脑网络通过对精度矩阵的估计来探索所考虑的脑区域之间的依赖关系。本文采用基于线性回归的方法对脑功能成像数据进行偏相关矩阵估计。知道脑网络是稀疏的和分层的,11范数惩罚回归被用来估计稀疏脑网络。虽然能够包含稀疏性信息,但单独的11范数惩罚在估计大脑网络时不能包含层次结构先验信息。本文提出了一种在层次层次上应用稀疏性约束的l1正则化方法,并描述了其实现方法。这种层次稀疏性方法的优点是生成的大脑网络在层次结构的所有层次上都是稀疏的。与其他现有方法相比,该方法的性能在实际fMRI数据上得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信