Dynamic spatial augmented reality with a single IR camera

N. Hashimoto, Daisuke Kobayashi
{"title":"Dynamic spatial augmented reality with a single IR camera","authors":"N. Hashimoto, Daisuke Kobayashi","doi":"10.1145/2945078.2945083","DOIUrl":null,"url":null,"abstract":"We propose a dynamic spatial augmented reality (SAR) system with effective machine learning techniques and edge-based object tracking. Real-time 3D pose estimation is the significant problem of projecting images on moving objects. However, camera-based feature detection is difficult, because most targets have a texture-less surface. Image projection and projected images also interfere with detection. Obtaining 3D shape information with stereo-paired cameras [Resch et al. 2016] is still a time-consuming process, and using a depth sensor with IR [Koizumi et al. 2015] is still unstable and have a fatal time-delay for the dynamic SAR. Therefore, we quickly and robustly estimate the 3D pose of the target objects by using effective machine learning with IR images. And by the combined use of high-speed edge-based object tracking, we realize a stable and low-delay SAR for moving objects.","PeriodicalId":417667,"journal":{"name":"ACM SIGGRAPH 2016 Posters","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2016 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2945078.2945083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a dynamic spatial augmented reality (SAR) system with effective machine learning techniques and edge-based object tracking. Real-time 3D pose estimation is the significant problem of projecting images on moving objects. However, camera-based feature detection is difficult, because most targets have a texture-less surface. Image projection and projected images also interfere with detection. Obtaining 3D shape information with stereo-paired cameras [Resch et al. 2016] is still a time-consuming process, and using a depth sensor with IR [Koizumi et al. 2015] is still unstable and have a fatal time-delay for the dynamic SAR. Therefore, we quickly and robustly estimate the 3D pose of the target objects by using effective machine learning with IR images. And by the combined use of high-speed edge-based object tracking, we realize a stable and low-delay SAR for moving objects.
动态空间增强现实与一个单一的红外相机
我们提出了一个动态空间增强现实(SAR)系统,该系统具有有效的机器学习技术和基于边缘的目标跟踪。实时三维姿态估计是在运动物体上投影图像的重要问题。然而,基于相机的特征检测是困难的,因为大多数目标具有无纹理的表面。图像投影和投影图像也会干扰检测。使用立体对相机获取三维形状信息[Resch等人,2016]仍然是一个耗时的过程,并且使用红外深度传感器[Koizumi等人,2015]仍然不稳定,并且对动态SAR具有致命的时间延迟。因此,我们通过使用有效的红外图像机器学习快速鲁棒地估计目标物体的三维姿态。结合高速边缘目标跟踪,实现了对运动目标的稳定低时延SAR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信