Projective and telescopic projective integration for the nonlinear BGK and Boltzmann equations

Ward Melis, Thomas Rey, G. Samaey
{"title":"Projective and telescopic projective integration for the nonlinear BGK and Boltzmann equations","authors":"Ward Melis, Thomas Rey, G. Samaey","doi":"10.5802/smai-jcm.43","DOIUrl":null,"url":null,"abstract":"We present high-order, fully explicit projective integration schemes for nonlinear collisional kinetic equations such as the BGK and Boltzmann equation. The methods first take a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution. Then, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. The procedure can be recursively repeated on a hierarchy of projective levels to construct telescopic projective integration methods. Based on the spectrum of the linearized collision operator, we deduce that the computational cost of the method is essentially independent of the stiffness of the problem: with an appropriate choice of inner step size, the time step restriction on the outer time step, as well as the number of inner time steps, is independent of the stiffness of the (collisional) source term. In some cases, the number of levels in the telescopic hierarchy depends logarithmically on the stiffness. We illustrate the method with numerical results in one and two spatial dimensions.","PeriodicalId":376888,"journal":{"name":"The SMAI journal of computational mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SMAI journal of computational mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/smai-jcm.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present high-order, fully explicit projective integration schemes for nonlinear collisional kinetic equations such as the BGK and Boltzmann equation. The methods first take a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution. Then, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. The procedure can be recursively repeated on a hierarchy of projective levels to construct telescopic projective integration methods. Based on the spectrum of the linearized collision operator, we deduce that the computational cost of the method is essentially independent of the stiffness of the problem: with an appropriate choice of inner step size, the time step restriction on the outer time step, as well as the number of inner time steps, is independent of the stiffness of the (collisional) source term. In some cases, the number of levels in the telescopic hierarchy depends logarithmically on the stiffness. We illustrate the method with numerical results in one and two spatial dimensions.
非线性BGK和Boltzmann方程的射影和伸缩射影积分
我们提出了非线性碰撞动力学方程如BGK方程和玻尔兹曼方程的高阶、全显式投影积分格式。这些方法首先使用一种简单、明确的方法(如直接正向欧拉法)采取一些小的(内部)步骤,以消除溶液中的刚性成分。然后,估计时间导数,并将其应用于任意阶的(外)龙格-库塔方法。该过程可以在投影层次的层次上递归重复,以构造可伸缩的投影积分方法。根据线性化碰撞算子的谱,我们推断出该方法的计算代价基本上与问题的刚度无关:通过适当选择内步长,外部时间步长的时间步限制以及内时间步长的数量与(碰撞)源项的刚度无关。在某些情况下,伸缩层次中的层次数与刚度呈对数关系。我们用一维和二维的数值结果来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信