Neurodegenerative Disease Detection using Deep Convolutional GANs and CNN

Tushar Deshpande, Khushi Chavan, Priya Gandhi, Ramchandra S. Mangrulkar
{"title":"Neurodegenerative Disease Detection using Deep Convolutional GANs and CNN","authors":"Tushar Deshpande, Khushi Chavan, Priya Gandhi, Ramchandra S. Mangrulkar","doi":"10.1109/I2CT57861.2023.10126492","DOIUrl":null,"url":null,"abstract":"Over the past ten years, advances in deep machine learning techniques, high-speed computing infrastructure development, and an improved understanding of deep learning algorithms have created new opportunities for advanced analysis of neuroimaging data. Neuroscientists can now use the data from neuroimaging to diagnose neurodegenerative diseases. Yet, due to the similarities in disease characteristics, it is challenging to identify such disorders from neuroimaging data accurately. The reason for such results is the current or inevitable limited availability of neuroimaging data. Thus, this paper suggests an unsupervised generative modeling technique using Deep Convolutional Adversarial Networks to produce synthetic images (DCGANs). This method uses the ADNI dataset, which contains data for four neurodegenerative diseases, namely: Alzheimer’s Disease(AD), Mild Cognitive Impairment(MCI), Early Mild Cognitive Impairment(EMCI), Late Mild Cognitive Impairment(LMCI), and subsequently uses DCGAN on the small quantity of data, so increasing the dataset’s size and variety by utilizing GAN. To outperform the conventional deep learning techniques, the artificial images, and the original dataset images are combined and trained into a convolutional neural network (CNN).","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past ten years, advances in deep machine learning techniques, high-speed computing infrastructure development, and an improved understanding of deep learning algorithms have created new opportunities for advanced analysis of neuroimaging data. Neuroscientists can now use the data from neuroimaging to diagnose neurodegenerative diseases. Yet, due to the similarities in disease characteristics, it is challenging to identify such disorders from neuroimaging data accurately. The reason for such results is the current or inevitable limited availability of neuroimaging data. Thus, this paper suggests an unsupervised generative modeling technique using Deep Convolutional Adversarial Networks to produce synthetic images (DCGANs). This method uses the ADNI dataset, which contains data for four neurodegenerative diseases, namely: Alzheimer’s Disease(AD), Mild Cognitive Impairment(MCI), Early Mild Cognitive Impairment(EMCI), Late Mild Cognitive Impairment(LMCI), and subsequently uses DCGAN on the small quantity of data, so increasing the dataset’s size and variety by utilizing GAN. To outperform the conventional deep learning techniques, the artificial images, and the original dataset images are combined and trained into a convolutional neural network (CNN).
基于深度卷积gan和CNN的神经退行性疾病检测
在过去的十年里,深度机器学习技术的进步、高速计算基础设施的发展以及对深度学习算法的理解的提高,为神经成像数据的高级分析创造了新的机会。神经科学家现在可以使用神经成像的数据来诊断神经退行性疾病。然而,由于疾病特征的相似性,从神经影像学数据中准确识别此类疾病是具有挑战性的。造成这种结果的原因是当前或不可避免的神经影像学数据的有限可用性。因此,本文提出了一种使用深度卷积对抗网络生成合成图像(dcgan)的无监督生成建模技术。该方法使用ADNI数据集,该数据集包含四种神经退行性疾病的数据,即阿尔茨海默病(AD)、轻度认知障碍(MCI)、早期轻度认知障碍(EMCI)、晚期轻度认知障碍(LMCI),随后对少量数据使用DCGAN,从而利用GAN增加数据集的规模和种类。为了超越传统的深度学习技术,人工图像和原始数据集图像被组合并训练成卷积神经网络(CNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信