Multiclass Classification of EEG Motor Imagery Signals Based on Transfer Learning

Chun-Yu Chen, Wei-Jen Wang, Chun-Chuan Chen
{"title":"Multiclass Classification of EEG Motor Imagery Signals Based on Transfer Learning","authors":"Chun-Yu Chen, Wei-Jen Wang, Chun-Chuan Chen","doi":"10.1109/ICASI55125.2022.9774441","DOIUrl":null,"url":null,"abstract":"Multiclass Classification of EEG signal is essential for brain computer interface (BCI) applications but extremely time consuming. We proposed a subject-weighted adaptive transfer learning method in conjunction with MLP and CNN classifiers for fast classification of multiclass EEG dataset.Analytic results show that CNN generally outperforms MLP in this multi-class classification. The use of transfer learning is efficient for building the predictive model without decreasing the accuracy and 2D CNN is more robust to between-subject variabilities.","PeriodicalId":190229,"journal":{"name":"2022 8th International Conference on Applied System Innovation (ICASI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI55125.2022.9774441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiclass Classification of EEG signal is essential for brain computer interface (BCI) applications but extremely time consuming. We proposed a subject-weighted adaptive transfer learning method in conjunction with MLP and CNN classifiers for fast classification of multiclass EEG dataset.Analytic results show that CNN generally outperforms MLP in this multi-class classification. The use of transfer learning is efficient for building the predictive model without decreasing the accuracy and 2D CNN is more robust to between-subject variabilities.
基于迁移学习的脑电运动图像信号多类分类
脑电信号的多类分类是脑机接口(BCI)应用的必要条件,但非常耗时。针对多类脑电数据的快速分类问题,提出了一种结合MLP和CNN分类器的主题加权自适应迁移学习方法。分析结果表明,在这种多类分类中,CNN总体上优于MLP。使用迁移学习在不降低准确率的情况下有效地构建了预测模型,并且二维CNN对主体间变量具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信