Hybrid Object Detection Using Domain-Specific Datasets

Martin Stancel, B. Madoš, M. Chovanec, P. Baláž
{"title":"Hybrid Object Detection Using Domain-Specific Datasets","authors":"Martin Stancel, B. Madoš, M. Chovanec, P. Baláž","doi":"10.1109/SAMI50585.2021.9378630","DOIUrl":null,"url":null,"abstract":"This paper describes a combination of color determination and object detection. It describes the creation of a hybrid system that would increase production and streamline the process of crop harvesting. The system aims to delineate all potential crops by determining color. If the potential crops are of the sufficient size then object detection is performed using YOLO technology which determines the confidence of strawberry prediction. The main part is the analysis and the implementation of this hybrid system in Python. The last part of the paper is devoted to the evaluation and verification of the created system.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a combination of color determination and object detection. It describes the creation of a hybrid system that would increase production and streamline the process of crop harvesting. The system aims to delineate all potential crops by determining color. If the potential crops are of the sufficient size then object detection is performed using YOLO technology which determines the confidence of strawberry prediction. The main part is the analysis and the implementation of this hybrid system in Python. The last part of the paper is devoted to the evaluation and verification of the created system.
使用领域特定数据集的混合目标检测
本文介绍了一种颜色确定与目标检测相结合的方法。它描述了一种混合系统的创建,该系统将增加产量并简化作物收获过程。该系统旨在通过确定颜色来描绘所有潜在的作物。如果潜在的作物有足够的大小,那么使用YOLO技术进行目标检测,这决定了草莓预测的置信度。主要部分是对该混合系统在Python中的分析和实现。论文的最后一部分对所创建的系统进行了评估和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信