Categorical Data Clustering Using Harmony Search Algorithm for Healthcare Datasets

Abha Sharma, Pushpendra Kumar, K. S. Babulal, Ahmed J. Obaid, Harshita Patel
{"title":"Categorical Data Clustering Using Harmony Search Algorithm for Healthcare Datasets","authors":"Abha Sharma, Pushpendra Kumar, K. S. Babulal, Ahmed J. Obaid, Harshita Patel","doi":"10.4018/ijehmc.309440","DOIUrl":null,"url":null,"abstract":"Healthcare analytics provide many benefits in healthcare dashboard systems. Healthcare datasets majorly contains categorical attributes. This paper proposed an optimized clustering for healthcare dataset named harmony search based categorical clustering (HSCC). The existing k-modes clustering algorithm is one of the well-known categorical data-clustering algorithm. Since the k-modes algorithm produces local optimal clusters. Generally, researchers use genetic algorithm (GA) based clustering algorithms to converge locally optimal solutions to global optimal solutions. GA has some deficiencies such as premature convergence with low speed. In this paper, harmony search (HS) optimization algorithm used to optimize clustering results. The result shows the proposed HSCC algorithm produced global optimized solution, unbiased and matured results. HSCC produces 98% accuracy for dental and 71% for lung cancer dataset. While GACC produces 95% and 65% accuracy for dental dataset and lung cancer dataset.","PeriodicalId":375617,"journal":{"name":"Int. J. E Health Medical Commun.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. E Health Medical Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijehmc.309440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Healthcare analytics provide many benefits in healthcare dashboard systems. Healthcare datasets majorly contains categorical attributes. This paper proposed an optimized clustering for healthcare dataset named harmony search based categorical clustering (HSCC). The existing k-modes clustering algorithm is one of the well-known categorical data-clustering algorithm. Since the k-modes algorithm produces local optimal clusters. Generally, researchers use genetic algorithm (GA) based clustering algorithms to converge locally optimal solutions to global optimal solutions. GA has some deficiencies such as premature convergence with low speed. In this paper, harmony search (HS) optimization algorithm used to optimize clustering results. The result shows the proposed HSCC algorithm produced global optimized solution, unbiased and matured results. HSCC produces 98% accuracy for dental and 71% for lung cancer dataset. While GACC produces 95% and 65% accuracy for dental dataset and lung cancer dataset.
基于和谐搜索算法的医疗数据集分类数据聚类
医疗保健分析在医疗保健仪表板系统中提供了许多好处。医疗保健数据集主要包含分类属性。本文提出了一种针对医疗数据集的优化聚类方法——基于和谐搜索的分类聚类。现有的k模式聚类算法是一种著名的分类数据聚类算法。由于k模式算法产生局部最优聚类。一般来说,研究人员使用基于遗传算法的聚类算法将局部最优解收敛到全局最优解。遗传算法存在速度慢、过早收敛等缺点。本文采用和声搜索(HS)优化算法对聚类结果进行优化。结果表明,所提出的HSCC算法得到了全局最优解,结果无偏且成熟。HSCC在牙科数据集的准确率为98%,在肺癌数据集的准确率为71%。而GACC在牙科数据集和肺癌数据集上的准确率分别为95%和65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信