H. Fukaya, M. Furuta, Shinichiroh Matsuo, T. Onogi, S. Yamaguchi, Mayuko Yamashita
{"title":"A physicist-friendly reformulation of the Atiyah-Patodi-Singer index and its mathematical justification","authors":"H. Fukaya, M. Furuta, Shinichiroh Matsuo, T. Onogi, S. Yamaguchi, Mayuko Yamashita","doi":"10.22323/1.363.0061","DOIUrl":null,"url":null,"abstract":"The Atiyah-Patodi-Singer index theorem describes the bulk-edge correspondence of symmetry protected topological insulators. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a non-local and unnatural boundary condition known as the \"APS boundary condition\" by hand. In 2017, we showed that the same integer as the APS index can be obtained from the $\\eta$ invariant of the domain-wall Dirac operator. Recently we gave a mathematical proof that the equivalence is not a coincidence but generally true. In this contribution to the proceedings of LATTICE 2019, we try to explain the whole story in a physicist-friendly way.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The Atiyah-Patodi-Singer index theorem describes the bulk-edge correspondence of symmetry protected topological insulators. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a non-local and unnatural boundary condition known as the "APS boundary condition" by hand. In 2017, we showed that the same integer as the APS index can be obtained from the $\eta$ invariant of the domain-wall Dirac operator. Recently we gave a mathematical proof that the equivalence is not a coincidence but generally true. In this contribution to the proceedings of LATTICE 2019, we try to explain the whole story in a physicist-friendly way.