A physicist-friendly reformulation of the Atiyah-Patodi-Singer index and its mathematical justification

H. Fukaya, M. Furuta, Shinichiroh Matsuo, T. Onogi, S. Yamaguchi, Mayuko Yamashita
{"title":"A physicist-friendly reformulation of the Atiyah-Patodi-Singer index and its mathematical justification","authors":"H. Fukaya, M. Furuta, Shinichiroh Matsuo, T. Onogi, S. Yamaguchi, Mayuko Yamashita","doi":"10.22323/1.363.0061","DOIUrl":null,"url":null,"abstract":"The Atiyah-Patodi-Singer index theorem describes the bulk-edge correspondence of symmetry protected topological insulators. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a non-local and unnatural boundary condition known as the \"APS boundary condition\" by hand. In 2017, we showed that the same integer as the APS index can be obtained from the $\\eta$ invariant of the domain-wall Dirac operator. Recently we gave a mathematical proof that the equivalence is not a coincidence but generally true. In this contribution to the proceedings of LATTICE 2019, we try to explain the whole story in a physicist-friendly way.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Atiyah-Patodi-Singer index theorem describes the bulk-edge correspondence of symmetry protected topological insulators. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a non-local and unnatural boundary condition known as the "APS boundary condition" by hand. In 2017, we showed that the same integer as the APS index can be obtained from the $\eta$ invariant of the domain-wall Dirac operator. Recently we gave a mathematical proof that the equivalence is not a coincidence but generally true. In this contribution to the proceedings of LATTICE 2019, we try to explain the whole story in a physicist-friendly way.
对物理学家友好的Atiyah-Patodi-Singer指数的重新表述及其数学证明
Atiyah-Patodi-Singer指标定理描述了对称保护拓扑绝缘体的体边对应关系。然而,这个定理的数学设置与物理费米子系统没有直接关系,因为它在费米子场上施加了一个非局部和非自然的边界条件,称为“APS边界条件”。2017年,我们证明了可以从域壁狄拉克算子的$\eta$不变量中获得与APS索引相同的整数。最近,我们给出了一个数学证明,证明等效性不是巧合,而是普遍成立的。在这篇对LATTICE 2019会议纪要的贡献中,我们试图以一种物理学家友好的方式解释整个故事。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信