An Investigation of the Load Carrying Capacity of Pipelines Under Accidental and Longitudinal Moving (Sliding) Loads

Farhad Davaripour, B. Quinton
{"title":"An Investigation of the Load Carrying Capacity of Pipelines Under Accidental and Longitudinal Moving (Sliding) Loads","authors":"Farhad Davaripour, B. Quinton","doi":"10.1115/IPC2018-78316","DOIUrl":null,"url":null,"abstract":"In accidental scenarios on subsea pipeline systems, like the collision of two adjacent subsea risers, accidental loads are commonly considered as stationary loads; stationary loads refer to loads that act only normal to the pipe at one location. Hence, the potential considerable effects of moving (sliding) accidental loads are neglected; the term moving load refers to the location with respect to time. Accordingly, recent works for ship hull structures show that the structural resistance mobilized against the moving loads is significantly lower than against the stationary loads of similar magnitude; when the loads incite plastic damage. As such, it is reasonable to study the effects of lateral motion of accidental loads on the response of subsea pipelines. This paper implements finite element analyses to investigate the load carrying capacity of a cylindrical shell subject to moving loads; LS-Dyna software package with explicit time-integration scheme is employed in numerical simulations; only crumpling deformation of the cylinders are studied. This research demonstrates that the capacity of a cylindrical shell subject to a moving load, causing plastic damage, is considerably less than its capacity under a stationary load of similar magnitude.","PeriodicalId":273758,"journal":{"name":"Volume 1: Pipeline and Facilities Integrity","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Pipeline and Facilities Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In accidental scenarios on subsea pipeline systems, like the collision of two adjacent subsea risers, accidental loads are commonly considered as stationary loads; stationary loads refer to loads that act only normal to the pipe at one location. Hence, the potential considerable effects of moving (sliding) accidental loads are neglected; the term moving load refers to the location with respect to time. Accordingly, recent works for ship hull structures show that the structural resistance mobilized against the moving loads is significantly lower than against the stationary loads of similar magnitude; when the loads incite plastic damage. As such, it is reasonable to study the effects of lateral motion of accidental loads on the response of subsea pipelines. This paper implements finite element analyses to investigate the load carrying capacity of a cylindrical shell subject to moving loads; LS-Dyna software package with explicit time-integration scheme is employed in numerical simulations; only crumpling deformation of the cylinders are studied. This research demonstrates that the capacity of a cylindrical shell subject to a moving load, causing plastic damage, is considerably less than its capacity under a stationary load of similar magnitude.
管道在意外荷载和纵向移动(滑动)荷载作用下的承载能力研究
在海底管道系统的意外情况下,如两个相邻的海底隔水管的碰撞,意外载荷通常被认为是固定载荷;固定载荷是指只作用于管道在一个位置的正常载荷。因此,忽略了移动(滑动)意外荷载的潜在可观影响;移动荷载一词是指位置相对于时间。因此,最近对船体结构的研究表明,结构在运动荷载作用下的阻力明显低于相同强度的静载作用下的阻力;当载荷引起塑性损伤时。因此,研究意外荷载横向运动对海底管道响应的影响是合理的。本文采用有限元方法研究了圆柱壳在移动荷载作用下的承载能力;数值模拟采用显式时间积分方案的LS-Dyna软件包;只研究了圆筒的皱缩变形。该研究表明,圆柱壳在移动载荷作用下的塑性损伤能力,远远小于同等大小的静止载荷作用下的承载力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信