On Chaos Character of Dynamic Fuzzy Neural Network

Mo Tang, Ke-jun Wang, Xiaojun Bi
{"title":"On Chaos Character of Dynamic Fuzzy Neural Network","authors":"Mo Tang, Ke-jun Wang, Xiaojun Bi","doi":"10.1109/CSO.2011.183","DOIUrl":null,"url":null,"abstract":"The chaos character of dynamic fuzzy neural network is further explored and analyzed in this paper applying the traditional Lyapunov exponent method. Firstly, the working principle of dynamic fuzzy neural network is introduced, and then the discretization network model is given by Euler method. The dissipation and chaos traits of single dynamic fuzzy neuron and dynamic fuzzy neural networks are proved separately. According to Lyapunov exponent discriminance criterion, four conditions are deduced, which the parameters should satisfy to prove the existence of chaos in single dynamic neuron and dynamic fuzzy neural network.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2011.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The chaos character of dynamic fuzzy neural network is further explored and analyzed in this paper applying the traditional Lyapunov exponent method. Firstly, the working principle of dynamic fuzzy neural network is introduced, and then the discretization network model is given by Euler method. The dissipation and chaos traits of single dynamic fuzzy neuron and dynamic fuzzy neural networks are proved separately. According to Lyapunov exponent discriminance criterion, four conditions are deduced, which the parameters should satisfy to prove the existence of chaos in single dynamic neuron and dynamic fuzzy neural network.
动态模糊神经网络的混沌特性研究
本文应用传统的李雅普诺夫指数方法对动态模糊神经网络的混沌特性进行了进一步的探讨和分析。首先介绍了动态模糊神经网络的工作原理,然后用欧拉法给出了网络的离散化模型。分别证明了单个动态模糊神经元和动态模糊神经网络的耗散和混沌特性。根据李雅普诺夫指数判别准则,推导出单动态神经元和动态模糊神经网络中混沌存在的四个条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信