Fuzzy systems as universal approximators

B. Kosko
{"title":"Fuzzy systems as universal approximators","authors":"B. Kosko","doi":"10.1109/FUZZY.1992.258720","DOIUrl":null,"url":null,"abstract":"The author shows that an additive fuzzy system can approximate any continuous function on a compact domain to any degree of accuracy. Fuzzy systems are dense in the space of continuous functions. The fuzzy system approximates the function by covering its graph with fuzzy patches in the input-output state space. Each fuzzy rule defines a fuzzy patch and connects commonsense knowledge with state-space geometry. Neural or statistical clustering algorithms can approximate the unknown fuzzy patches and generate fuzzy systems from training data.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1686","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1686

Abstract

The author shows that an additive fuzzy system can approximate any continuous function on a compact domain to any degree of accuracy. Fuzzy systems are dense in the space of continuous functions. The fuzzy system approximates the function by covering its graph with fuzzy patches in the input-output state space. Each fuzzy rule defines a fuzzy patch and connects commonsense knowledge with state-space geometry. Neural or statistical clustering algorithms can approximate the unknown fuzzy patches and generate fuzzy systems from training data.<>
模糊系统作为全称逼近器
证明了加性模糊系统能以任意精度逼近紧域上的任意连续函数。模糊系统在连续函数空间中是密集的。模糊系统通过在输入-输出状态空间中用模糊补丁覆盖其图来逼近该函数。每个模糊规则定义一个模糊补丁,并将常识性知识与状态空间几何联系起来。神经或统计聚类算法可以近似未知的模糊块,并从训练数据生成模糊系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信