{"title":"Using CNN-XGBoost Deep Networks for COVID-19 Detection in Chest X-ray Images","authors":"Ahmed Mabrouk Fangoh, Sahar Selim","doi":"10.1109/ICCES51560.2020.9334600","DOIUrl":null,"url":null,"abstract":"At the time of writing, the COVID-19 pandemic is one of the lead causes of death worldwide and has caused significant changes to everyone’s lives. While a vaccine is still unavailable, early screenings and detection of the disease can significantly help in managing the healthcare system’s capacity as well as allow radiologists and clinicians better assign their priorities. With deep learning’s rapid advancements over the last few years, its application in solving this issue is only natural. This paper aims to outline the works of a few major developments in the field of using deep learning to classify COVID-19 cases, illustrating common techniques and issues faced. Following this, a deep learning architecture is proposed and tested, then compared to the findings of the mentioned papers.","PeriodicalId":247183,"journal":{"name":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES51560.2020.9334600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
At the time of writing, the COVID-19 pandemic is one of the lead causes of death worldwide and has caused significant changes to everyone’s lives. While a vaccine is still unavailable, early screenings and detection of the disease can significantly help in managing the healthcare system’s capacity as well as allow radiologists and clinicians better assign their priorities. With deep learning’s rapid advancements over the last few years, its application in solving this issue is only natural. This paper aims to outline the works of a few major developments in the field of using deep learning to classify COVID-19 cases, illustrating common techniques and issues faced. Following this, a deep learning architecture is proposed and tested, then compared to the findings of the mentioned papers.