A Model for Context-Aware Location Identity Preservation Using Differential Privacy

Roland Assam, T. Seidl
{"title":"A Model for Context-Aware Location Identity Preservation Using Differential Privacy","authors":"Roland Assam, T. Seidl","doi":"10.1109/TrustCom.2013.45","DOIUrl":null,"url":null,"abstract":"Geospatial data emanating from GPS-enabled pervasive devices reflects the mobility and interactions between people and places, and poses serious threats to privacy. Most of the existing location privacy works are based on the k-Anonymity privacy paradigm. In this paper, we employ a different and stronger privacy definition called Differential Privacy. We propose a novel context-aware and non context-aware differential privacy technique. Our technique couples Kalman filter and exponential mechanism to ensure differential privacy for spatio-temporal data. We demonstrate that our approach protects outliers and provides stronger privacy than state-of-the-art works.","PeriodicalId":206739,"journal":{"name":"2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TrustCom.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Geospatial data emanating from GPS-enabled pervasive devices reflects the mobility and interactions between people and places, and poses serious threats to privacy. Most of the existing location privacy works are based on the k-Anonymity privacy paradigm. In this paper, we employ a different and stronger privacy definition called Differential Privacy. We propose a novel context-aware and non context-aware differential privacy technique. Our technique couples Kalman filter and exponential mechanism to ensure differential privacy for spatio-temporal data. We demonstrate that our approach protects outliers and provides stronger privacy than state-of-the-art works.
基于差分隐私的环境感知位置身份保护模型
从具有gps功能的普及设备发出的地理空间数据反映了人和地点之间的移动性和交互性,并对隐私构成严重威胁。现有的位置隐私工作大多基于k-匿名隐私范式。在本文中,我们采用了一种不同的、更强的隐私定义,称为差分隐私。我们提出了一种新的上下文感知和非上下文感知的差分隐私技术。我们的技术结合了卡尔曼滤波和指数机制来保证时空数据的差分隐私。我们证明,我们的方法可以保护异常值,并提供比最先进的作品更强的隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信