High-accuracy Computation of Rolling Friction Contact Problems

Vincent Acary, P. Armand, Hoang Minh Nguyen
{"title":"High-accuracy Computation of Rolling Friction Contact Problems","authors":"Vincent Acary, P. Armand, Hoang Minh Nguyen","doi":"10.1109/NICS56915.2022.10013388","DOIUrl":null,"url":null,"abstract":"Our goal is to numerically solve optimization problems derived from a mechanical model of unilateral contact between solid bodies with rolling friction. The model is an optimization problem with a strictly convex quadratic objective function and a second-order cone of constraints that is not self-dual. The solver is an implementation of a primal-dual interior-point algorithm with the predictor-corrector scheme of Mehrotra extended to the second-order cone problem. We focused on analyzing the limits of numerical computation and proposed some treatments to achieve optimal solutions with ten significant digits of precision.","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS56915.2022.10013388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our goal is to numerically solve optimization problems derived from a mechanical model of unilateral contact between solid bodies with rolling friction. The model is an optimization problem with a strictly convex quadratic objective function and a second-order cone of constraints that is not self-dual. The solver is an implementation of a primal-dual interior-point algorithm with the predictor-corrector scheme of Mehrotra extended to the second-order cone problem. We focused on analyzing the limits of numerical computation and proposed some treatments to achieve optimal solutions with ten significant digits of precision.
滚动摩擦接触问题的高精度计算
我们的目标是数值解决由具有滚动摩擦的实体之间单边接触的力学模型导出的优化问题。该模型是一个具有严格凸二次目标函数和非自对偶约束的二阶锥的优化问题。求解器是一种原始-对偶内点算法的实现,将Mehrotra的预测-校正格式推广到二阶锥问题。我们着重分析了数值计算的局限性,并提出了一些处理方法,以获得精度为十位有效数字的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信